满分5 > 初中数学试题 >

如图,△ABC是边长为6cm的等边三角形,被一平行于BC的矩形所截,AB被截成三...

如图,△ABC是边长为6cm的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为( )

manfen5.com 满分网
A.4cm2
B.2cm2
C.3manfen5.com 满分网cm2
D.3cm2
由题意知EFGH为等腰梯形,要求它的面积,只要求出EH、FG及高(为等边三角形的高的)即可. 【解析】 ∵等边三角形,被一平行于BC的矩形所截,AB被截成三等分, ∴EH=BC=2cm,FG=BC=4cm,且四边形EHGF是等腰梯形,它的高为等边三角形的高的, ∵等边三角形的高=6×sin60°=3, ∴等腰梯形高等于, ∴等腰梯形的面积=×=3,即阴影部分的面积为3. 故选C.
复制答案
考点分析:
相关试题推荐
在平行四边形ABCD中,AC=4,BD=6,P是BD上的.任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.
求证:
(1)AD=BD=BC;
(2)点D是线段AC的黄金分割点.

manfen5.com 满分网 查看答案
若一个矩形的短边与长边的比值为manfen5.com 满分网(黄金分割数),我们把这样的矩形叫做黄金矩形.
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD;
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由;
(3)归纳:通过上述操作及探究,请概括出具有一般性的结论(不需要证明).

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=manfen5.com 满分网AB,OD=2.
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比manfen5.com 满分网
①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.

manfen5.com 满分网 查看答案
宽与长之比为manfen5.com 满分网:1的矩形叫黄金矩形,黄金矩形令人赏心悦目,它给我们以协调,匀称的美感,如图,如果在一个黄金矩形里画一个正方形,那么留下的矩形还是黄金矩形吗?请证明你的结论.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.