满分5 > 初中数学试题 >

已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P...

已知:线段OA⊥OB,点C为OB中点,D为线段OA上一点.连接AC,BD交于点P.
(1)如图1,当OA=OB,且D为OA中点时,求manfen5.com 满分网的值;
(2)如图2,当OA=OB,且manfen5.com 满分网时,求tan∠BPC的值.
(3)如图3,当AD:AO:OB=1:n:manfen5.com 满分网时,直接写出tan∠BPC的值.
manfen5.com 满分网
(1)过D作BO的平行线,根据平行线分线段成比例定理,在△ACO中ED:CO=AD:AO,在△PDE和△PCB中,ED:BC=PE:PC,再根据C是BO的中点,可以求出PE:PC=1:2,再根据三角形中位线定理,点E是AC的中点,利用比例变形即可求出AP与PC的比值等于2; (2)同(1)的方法,先求出PC=AC,再过D作DF⊥AC于F,设AD为a,利用勾股定理求出AC等于2a,再利用相似三角形对应边成比例求出DF、AF的值,而PF=AC-AF-PC,也可求出,又∠BPC与∠FPD是对顶角,所以其正切值便可求出. (3)根据(2)的方法,把相应数据进行代换即可求出. 【解析】 (1)过D作DE∥CO交AC于E, ∵D为OA中点, ∴AE=CE=,, ∵点C为OB中点, ∴BC=CO,, ∴, ∴PC==, ∴=2; (2)过点D作DE∥BO交AC于E, ∵, ∴==, ∵点C为OB中点, ∴, ∴, ∴PC==, 过D作DF⊥AC,垂足为F,设AD=a,则AO=4a, ∵OA=OB,点C为OB中点, ∴CO=2a, 在Rt△ACO中,AC===2a, 又∵Rt△ADF∽Rt△ACO, ∴, ∴AF=,DF=, PF=AC-AF-PC=2a--=, tan∠BPC=tan∠FPD==. (3)与(2)的方法相同,设AD=a,求出DF=a, PF=a,所以tan∠BPC=.
复制答案
考点分析:
相关试题推荐
如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F.设动点PQ运动时间为t(单位:秒).
(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;
(2)当t=2秒时,求梯形OFBC的面积;
(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.

manfen5.com 满分网 查看答案
数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?
经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:manfen5.com 满分网,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值.
(1)请按照小明的思路写出求解过程.
(2)小东又对此题作了进一步探究,得出了DP=MN的结论,你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.
manfen5.com 满分网
查看答案
如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论manfen5.com 满分网成立.(考生不必证明)
(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.
(3)发现:通过上述过程,你发现G在直线CD上时,结论manfen5.com 满分网还成立吗?

manfen5.com 满分网 查看答案
如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2
(1)求AD的长及t的取值范围;
(2)当1.5≤t≤t(t为(1)中t的最大值)时,求y关于t的函数关系式;
(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.

manfen5.com 满分网 查看答案
如图,直线AlA∥BB1∥CC1,若AB=8,BC=4,A1B1=6,则线段B1C1的长是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.