如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.
(1)判断△ABC和△DEF是否相似,并说明理由;
(2)P
1,P
2,P
3,P
4,P
5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)
考点分析:
相关试题推荐
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延长线交于点E.
(1)证明:△OAB∽△EDA;
(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.
查看答案
学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.
(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地你可以得到:“满足______,或______,两个直角三角形相似”.
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足______的两个直角三角形相似”.
请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,______.
试说明Rt△ABC∽Rt△A′B′C′.
查看答案
已知:正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.
(1)求证:△ABF≌△DAE;
(2)找出图中与△ABM相似的所有三角形(不添加任何辅助线).
查看答案
如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A
1B
1C
1.
﹙1﹚将△ABC,△A
1B
1C
1如图②摆放,使点A
1与B重合,点B
1在AC边的延长线上,连接CC
1交BB
1于点E.求证:∠B
1C
1C=∠B
1BC.
﹙2﹚若将△ABC,△A
1B
1C
1如图③摆放,使点B
1与B重合,点A
1在AC边的延长线上,连接CC
1交A
1B于点F,试判断∠A
1C
1C与∠A
1BC是否相等,并说明理由.
﹙3﹚写出问题﹙2﹚中与△A
1FC相似的三角形.
查看答案
A.某中学师生在劳动基地活动时,看到木工师傅在材料边角处画直角时,用了一种“三弧法”.方法是:
①画线段AB,分别以A,B为圆心,AB长为半径画弧相交于C;
②以C为圆心,仍以AB长为半径画弧交AC的延长线于D;
③连接DB.则∠ABD就是直角.
(1)请你就∠ABD是直角作出合理解释;
(2)现有一长方形木块的残留部分如图,其中AB,CD整齐且平行,BC,AD是参差不齐的毛边.请你在毛边附近用尺规画一条与AB,CD都垂直的边(不写作法,保留作图痕迹);
B.如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.
(1)写出图中所有相等的线段,并选择其中一对给予证明;
(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.
查看答案