如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当t=0.5时,求线段QM的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究
是否为定值?若是,试求这个定值;若不是,请说明理
由.
考点分析:
相关试题推荐
问题背景
(1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:
四边形DBFE的面积S=______,△EFC的面积S
1=______,△ADE的面积S
2=______.
探究发现
(2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h.请证明S
2=4S
1S
2.
拓展迁移
(3)如图,▱DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
查看答案
如图所示,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.
(1)求证:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BE及EF的长.
查看答案
如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G、H.
(1)求证:△BAE∽△BCF;
(2)若BG=BH,求证:四边形ABCD是菱形.
查看答案
如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S
1,S
2,S
3表示,则不难证明S
1=S
2+S
3.
(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S
1,S
2,S
3表示,那么S
1,S
2,S
3之间有什么关系;(不必证明)
(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S
1、S
2、S
3表示,请你确定S
1,S
2,S
3之间的关系并加以证明;
(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S
1,S
2,S
3表示,为使S
1,S
2,S
3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;
(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.
查看答案
如图,已知△ABC∽△A
1B
1C
1,相似比为k(k>1),且△ABC的三边长分别为a、b、c(a>b>c),△A
1B
1C
1的三边长分别为a
1、b
1、c
1.
(1)若c=a
1,求证:a=kc;
(2)若c=a
1,试给出符合条件的一对△ABC和△A
1B
1C
1,使得a、b、c和a
1、b
1、c
1都是正整数,并加以说明;
(3)若b=a
1,c=b
1,是否存在△ABC和△A
1B
1C
1使得k=2?请说明理由.
查看答案