满分5 > 初中数学试题 >

在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=....

manfen5.com 满分网在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=manfen5.com 满分网.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;
(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
(1)过B作BH⊥x轴于H,则OH=BC=3,进而可求得AH的长,在Rt△ABH中,根据勾股定理即可求出BH的长,由此可得B点坐标; (2)过E作EG⊥x轴于G,易得△OGE∽△OHB,根据相似三角形的对应边成比例可求出EG、OG的长,即可得到E点的坐标,进而可用待定系数法求出直线DE的解析式; (3)此题应分情况讨论: ①以OD、ON为边的菱形ODMN,根据直线DE的解析式可求出F点的坐标,即可得到OF的长;过M作MP⊥y轴于P,通过构建的相似三角形可求出M点的坐标,将M点向下平移OD个单位即可得到N点的坐标; ②以OD、OM为边的菱形ODNM,此时MN∥y轴,延长NM交x轴于P,可根据直线DE的解析式用未知数设出M点的坐标,进而可在Rt△OMP中,由勾股定理求出M点的坐标,将M点向上平移OD个单位即可得到N点的坐标; ③以OD为对角线的菱形OMCN,根据菱形对角线互相垂直平分的性质即可求得M、N的纵坐标,将M点纵坐标代入直线DE的解析式中即可求出M点坐标,而M、N关于y轴对称,由此可得到N点的坐标. 【解析】 (1)作BH⊥x轴于点H,则四边形OHBC为矩形, ∴OH=CB=3,(1分) ∴AH=OA-OH=6-3=3, 在Rt△ABH中,BH===6,(2分) ∴点B的坐标为(3,6);(3分) (2)作EG⊥x轴于点G,则EG∥BH, ∴△OEG∽△OBH,(4分) ∴, 又∵OE=2EB, ∴, ∴=, ∴OG=2,EG=4, ∴点E的坐标为(2,4),(5分) 又∵点D的坐标为(0,5), 设直线DE的解析式为y=kx+b, 则, 解得k=-,b=5, ∴直线DE的解析式为:y=-x+5;(7分) (3)答:存在(8分) ①如图1,当OD=DM=MN=NO=5时,四边形ODMN为菱形.作MP⊥y轴于点P,则MP∥x轴,∴△MPD∽△FOD ∴, 又∵当y=0时,-x+5=0, 解得x=10, ∴F点的坐标为(10,0), ∴OF=10, 在Rt△ODF中,FD===5, ∴, ∴MP=2,PD=, ∴点M的坐标为(-2,5+), ∴点N的坐标为(-2,);(10分) ②如图2,当OD=DN=NM=MO=5时,四边形ODNM为菱形.延长NM交x轴于点P,则MP⊥x轴. ∵点M在直线y=-x+5上, ∴设M点坐标为(a,-a+5), 在Rt△OPM中,OP2+PM2=OM2, ∴a2+(-a+5)2=52, 解得:a1=4,a2=0(舍去), ∴点M的坐标为(4,3), ∴点N的坐标为(4,8);(12分) ③如图3,当OM=MD=DN=NO时,四边形OMDN为菱形,连接NM,交OD于点P,则NM与OD互相垂直平分, ∴yM=yN=OP=, ∴-xM+5=, ∴xM=5, ∴xN=-xM=-5, ∴点N的坐标为(-5,),(14分) 综上所述,x轴上方的点N有三个,分别为N1(-2,),N2(4,8),N3(-5,). (其它解法可参照给分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在△ABC中,D是BC边上一点,E是AC边上一点,且满足AD=AB,∠ADE=∠C.
(1)求证:∠AED=∠ADC,∠DEC=∠B;
(2)求证:AB2=AE•AC.
查看答案
如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.
(1)当点E坐标为(3,0)时,试证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t>0),结论CE=EP是否成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB.
(1)求证:△ADF∽△CAE;
(2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积?

manfen5.com 满分网 查看答案
设△A1B1C1的面积是S1,△A2B2C2的面积为S2(S1<S2),当△A1B1C1∽△A2B2C2,且manfen5.com 满分网时,则称△A1B1C1与△A2B2C2有一定的“全等度”.如图,已知梯形ABCD,AD∥BC,∠B=30°,∠BCD=60°,连接AC.
(1)若AD=DC,求证:△DAC与△ABC有一定的“全等度”;
(2)你认为:△DAC与△ABC有一定的“全等度”正确吗?若正确,说明理由;若不正确,请举出一个反例说明.manfen5.com 满分网
查看答案
如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当t=0.5时,求线段QM的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究manfen5.com 满分网是否为定值?若是,试求这个定值;若不是,请说明理manfen5.com 满分网由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.