满分5 > 初中数学试题 >

如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运...

如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
manfen5.com 满分网
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?
(1)由相似三角形的判定得出△DEB∽△ACB,从而得出角的关系,再由AD=CD,得出BD与AB的关系,即可求的结论. (2)此题分两种情况求解,△BME∽△CNE或△BME∽△ENC,根据相似三角形的性质即可求得; (3)根据四边形的面积求解方法,利用分割法求不规则四边形的面积,作辅助线EN⊥BD即可求得. (1)证明:∵AD=CD ∴∠DAC=∠DCA ∴∠BDC=2∠DAC ∵DE是∠BDC的平分线 ∴∠BDC=2∠BDE ∴∠DAC=∠BDE ∴DE∥AC; (2)【解析】 (I)当△BME∽△CNE时,得∠MBE=∠NCE ∴BD=DC ∵DE平分∠BDC ∴DE⊥BC,BE=EC 又∠ACB=90° ∴DE∥AC ∴即BD=AB==5 ∴AD=5 (II)当△BME∽△ENC时,得∠EBM=∠CEN ∴EN∥BD ∵EN⊥CD ∴BD⊥CD即CD是△ABC斜边上的高 由三角形面积公式得AB•CD=AC•BC ∴CD= ∴AD= 综上,当AD=5或时,△BME与△CNE相似; (3)【解析】 由角平分线性质易得S△MDE=S△DEN=DM•ME ∵S四边形MEND=S△BDE ∴BD•EM=DM•EM即DM=BD ∴EM是BD的垂直平分线 ∴BE=DE,DM=BM, ∴BD=2BM, ∴∠EDB=∠DBE ∵∠EDB=∠CDE ∴∠DBE=∠CDE ∵∠DCE=∠BCD ∴△CDE∽△CBD ∴①, ∴ ∵BC=8, 即CD= ∴cosB= ∴CD=4×=5 由①式得CE= ∴BE= ∴BM=BE•cosB= ∴AD=AB-2BM=10-2×=.
复制答案
考点分析:
相关试题推荐
已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=manfen5.com 满分网PM.(不需证明)当PC=manfen5.com 满分网PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
manfen5.com 满分网
查看答案
如图,已知矩形ABCD,AB=manfen5.com 满分网,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形,并说明理由;
(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系并证明你猜想的结论.

manfen5.com 满分网 查看答案
如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的manfen5.com 满分网
(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在△ABC和△DEF中,∠A=∠D=90°,AB=DE=3,AC=2DF=4.
(1)判断这两个三角形是否相似并说明为什么?
(2)能否分别过A,D在这两个三角形中各作一条辅助线,使△ABC分割成的两个三角形与△DEF分割成的两个三角形分别对应相似?证明你的结论.
manfen5.com 满分网
查看答案
在数学课堂上,老师讲解“相似三角形”之后,接着出了一道题目让同学练习,题目是:“如图,四边形ABCD是平行四边形,E是BA延长线上一点,CE与AD相交于F.请写出与△EBC相似的三角形,并加以证明.”
聪聪看后,迅速写出了下面解答:
“与△EBC相似的只有△EAF.证明如下:∵四边形ABCD是平行四边形,∴AD∥BC.∴△EBC∽△EAF.”
你对聪聪的解答有何意见?为什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.