满分5 > 初中数学试题 >

如图1在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(-2,0),...

如图1在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2manfen5.com 满分网),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为3manfen5.com 满分网,请直接写出点F的坐标.manfen5.com 满分网
(1)由于平行四边形的对角相等,只需求得∠DAO的度数即可,在Rt△OAD中,根据A、D的坐标,可得到OA、OD的长,那么∠DAO的度数就不难求得了. (2)①根据A、D的坐标,易求得E点坐标,即可得到AE、OE的长,由此可判定△AOE是等边三角形,那么∠OEA=∠AOE=∠EOF′=60°,由此可推出OF′∥AE,即∠DEH=∠OF′E,根据轴对称的性质知∠OF′E=∠EFA,通过等量代换可得∠EFA=∠DGE=∠DEH,由此可证得所求的三角形相似. ②过E作CD的垂线,设垂足为M,则EM为△EGH中GH边上的高,根据△EGH的面积即可求得GH的长,在①题已经证得△DEG∽△DHE,可得DE2=DG•DH,可设出DG的长,然后表示出DH的值,代入上面的等量关系式中,即可求得DG的长,根据轴对称的性质知:DG=AF,由此得到AF的长,进而可求得F点的坐标,需注意的是,在表示DH的长时,要分两种情况考虑:一、点H在G的右侧,二、点H在G的左侧. 【解析】 (1)在直角△OAD中,∵tan∠OAD=OD:OA=, ∴∠A=60°, ∵四边形ABCD是平行四边形, ∴∠C=∠A=60°; (2)①证明:∵A(-2,0),D(0,2),且E是AD的中点, ∴E(-1,),AE=DE=2,OE=OA=2, ∴△OAE是等边三角形,则∠AOE=∠AEO=60°; 根据轴对称的性质知:∠AOE=∠EOF′,故∠EOF′=∠AEO=60°,即OF′∥AE, ∴∠OF′E=∠DEH; ∵∠OF′E=∠OFE=∠DGE, ∴∠DGE=∠DEH, 又∵∠GDE=∠EDH, ∴△DGE∽△DEH. ②过点E作EM⊥直线CD于点M, ∵CD∥AB, ∴∠EDM=∠DAB=60°, ∴EM=DE•sin60°=2×=, ∵S△EGH=•GH•ME=•GH•=3, ∴GH=6; ∵△DHE∽△DEG, ∴=即DE2=DG•DH, 当点H在点G的右侧时,设DG=x,DH=x+6, ∴4=x(x+6), 解得:x1=-3+,x2=-3-(舍), ∴点F的坐标为(1-,0); 当点H在点G的左侧时,设DG=x,DH=x-6, ∴4=x(x-6), 解得:x1=3+,x2=3-(舍), ∵△DEG≌△AEF, ∴AF=DG=3+, ∵OF=AO+AF=3++2=+5, ∴点F的坐标为(--5,0), 综上可知,点F的坐标有两个,分别是F1(1-,0),F2(--5,0).
复制答案
考点分析:
相关试题推荐
如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
manfen5.com 满分网
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?
查看答案
已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=manfen5.com 满分网PM.(不需证明)当PC=manfen5.com 满分网PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
manfen5.com 满分网
查看答案
如图,已知矩形ABCD,AB=manfen5.com 满分网,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形,并说明理由;
(3)若△PEF的边EF在线段BC上移动.试猜想:PH与BE有何数量关系并证明你猜想的结论.

manfen5.com 满分网 查看答案
如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的manfen5.com 满分网
(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在△ABC和△DEF中,∠A=∠D=90°,AB=DE=3,AC=2DF=4.
(1)判断这两个三角形是否相似并说明为什么?
(2)能否分别过A,D在这两个三角形中各作一条辅助线,使△ABC分割成的两个三角形与△DEF分割成的两个三角形分别对应相似?证明你的结论.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.