满分5 > 初中数学试题 >

在图1至图3中,直线MN与线段AB相交于点O,∠1=∠2=45°. (1)如图1...

在图1至图3中,直线MN与线段AB相交于点O,∠1=∠2=45°.
(1)如图1,若AO=OB,请写出AO与BD的数量关系和位置关系;
(2)将图1中的MN绕点O顺时针旋转得到图2,其中AO=OB.求证:AC=BD,AC⊥BD;
(3)将图2中的OB拉长为AO的k倍得到图3,求manfen5.com 满分网的值.manfen5.com 满分网
(1)根据等腰直角三角形的判定和性质得出; (2)过点B作BE∥CA交DO于E,通过证明△AOC≌△BOE,得出AC=BE,∠ACO=∠BEO,从而∠DEB=∠2,则BE=BD,等量代换得出AC=BD.延长AC交DB的延长线于F,根据平行线的性质及已知得出AC⊥BD; (3)过点B作BE∥CA交DO于E,通过证明△BOE∽△AOC,根据相似三角形的性质得出的值. (1)【解析】 AO=BD,AO⊥BD; (2)证明:如图2,过点B作BE∥CA交DO于E, 则∠ACO=∠BEO. 又∵AO=OB,∠AOC=∠BOE, ∴△AOC≌△BOE. ∴AC=BE. 又∵∠1=45°, ∴∠ACO=∠BEO=135°. ∴∠DEB=45°. ∵∠2=45°, ∴BE=BD,∠EBD=90°. ∴AC=BD. 延长AC交DB的延长线于F,如图. ∵BE∥AC, ∴∠AFD=90°. ∴AC⊥BD. (3)【解析】 如图3,过点B作BE∥CA交DO于E, 则∠BEO=∠ACO. 又∵∠BOE=∠AOC, ∴△BOE∽△AOC. ∴. 又∵OB=kAO, 由(2)的方法易得BE=BD. ∴ 答:的值为k.
复制答案
考点分析:
相关试题推荐
已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.
(1)当P点在BC边上运动时,求证:△BOP∽△DOE;
(2)设(1)中的相似比为k,若AD:BC=2:3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当k=1时,是______;②当k=2时,是______;③当k=3时,是______.并证明k=2时的结论.

manfen5.com 满分网 查看答案
如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长与CE交于点E.
(1)求证:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的长.

manfen5.com 满分网 查看答案
如图1在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2manfen5.com 满分网),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.
(1)求∠DCB的度数;
(2)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.
①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;
②若△EHG的面积为3manfen5.com 满分网,请直接写出点F的坐标.manfen5.com 满分网
查看答案
如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
manfen5.com 满分网
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?
查看答案
已知在Rt△ABC中,∠ABC=90°,∠A=30°,点P在AC上,且∠MPN=90°.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证Rt△PME∽Rt△PNF,得出PN=manfen5.com 满分网PM.(不需证明)当PC=manfen5.com 满分网PA,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.