满分5 > 初中数学试题 >

如图,E是矩形ABCD的边DC延长线上一点,连接AE分别交BC,BD于F,G. ...

如图,E是矩形ABCD的边DC延长线上一点,连接AE分别交BC,BD于F,G.
(1)图中有全等三角形吗?(对角线分矩形所得两个三角形除外)若有,请写出一对来;若没有,请添加一个条件(不添加辅助线和不改变图中字母),使得图中有全等三角形,并写出来;
(2)图中有相似三角形吗?设矩形ABCD的周长为20,对角线长为2manfen5.com 满分网,求DE的长,使得你找出的一对相似三角形的相似比为2:3.

manfen5.com 满分网
根据判定两个三角形全等的一般方法有:ASA、SSS、SAS、SSA、HL可知使△ABF≌△ECF,可添加BF=CF;根据矩形的性质求出矩形的边长,利用相似的性质可求得CE:DE=2:3,所以DE=12. 【解析】 (1)没有.添加条件为:点F是BC的中点,即BF=CF,即可得到△ABF≌△ECF; (2)有相似三角形,如:△CEF∽△EDA, 设CD=x,则BC=10-x, 在RT△BCD中,x2+(10-x)2=52,解得x=4或x=6, 因为BC>DC,所以BC=6,DC=4, 若,△CEF∽△DEA,相似三角形的相似比为2:3, 则CE:DE=2:3, ∴DE=12.
复制答案
考点分析:
相关试题推荐
如图,在△ABD和△ADE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?

manfen5.com 满分网 查看答案
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E是AB的中点,且CE⊥DE.
(1)请你判断△ADE与△BEC是否相似,并说明理由;
(2)若AD=1,BC=2,求AB的长.

manfen5.com 满分网 查看答案
本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲题:关于x的一元二次方程x2+(2k-3)x+k2=0有两个不相等的实数根α、β.
(1)求k的取值范围;
(2)若α+β+αβ=6,求(α-β)2+3αβ-5的值.
乙题:如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=manfen5.com 满分网DC,连接EF并延长交BC的延长线于点G
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF=90°,使EF交矩形的外角平分线BF于点F,设C(m,n).
(1)若m=n时,如图,求证:EF=AE;
(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF=AE?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)若m=tn(t>1)时,试探究点E在边OB的何处时,使得EF=(t+1)AE成立?并求出点E的坐标.manfen5.com 满分网
查看答案
如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.
(1)求证:△ACB∽△DCE;
(2)求证:EF⊥AB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.