满分5 > 初中数学试题 >

如图,已知平行四边形ABCD中,P是对角线BD上的一点,过P点作MN∥AD,EF...

如图,已知平行四边形ABCD中,P是对角线BD上的一点,过P点作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于M、N、E、F,设a=PM•PE,b=PN•PF.
(1)请判断a与b的大小关系,并说明理由;
(2)当manfen5.com 满分网时,求manfen5.com 满分网的值.

manfen5.com 满分网
(1)根据AD∥BC,可求出△PDE∽△PBF,因此PD:PB=PE:PF.同理可在相似三角形△PDN和△PBM中,求得PD:PB=PN:PM,两个比例关系式的等值替换,即可求出PM•PE=PN•FP,即a=b; (2)根据PM∥AD,可求出△BPM∽△ABD,可得出△PMB和△ABD的面积比;同理可求出△PED和△ABD的面积比.由于四边形AMPE的面积为△ABD、△PMB、△PED的面积差,由此可求出平行四边形PEAM与△ABD的面积比. 【解析】 (1)a=b 理由:∵BC∥AD ∴△PDE∽△PBF ∴ ∵AB∥CD ∴△PDN∽△PBM ∴ ∴ ∴PM•PE=PN•PF ∴a=b; (2)∵=2 ∴=, ∵MN∥AD,EF∥CD, ∴四边形BFPM是平行四边形 ∴△PBF≌△BPM ∴==, ∴S△BPM=4S△PDE ∵=2 ∴= ∴=, ∴S△BPM=S△BDA, ∵S△PDE=S△BPM=S△BDA, ∴S四边形PEAM=S△BDA ∴=.
复制答案
考点分析:
相关试题推荐
如图,已知AD是△ABC的中线,E是AD的中点,CE的延长线交AB于F,求AF:AB的值.

manfen5.com 满分网 查看答案
(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;
(2)如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;
(3)如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF与线段GH的关系并加以证明;
manfen5.com 满分网
附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.
查看答案
如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)D,F两点间的距离是______
(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;
(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;
(4)连接PG,当PG∥AB时,请直接写出t的值.

manfen5.com 满分网 查看答案
如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.
求证:(1)AE=CG;(2)AN•DN=CN•MN.

manfen5.com 满分网 查看答案
如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=manfen5.com 满分网CD.
(1)求证:△ABF∽△CEB;
(2)若△DEF的面积为2,求▱ABCD的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.