满分5 > 初中数学试题 >

如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点...

如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EF⊥AB,EG⊥AC,垂足分别为F,G.
(1)求证:manfen5.com 满分网
(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;
(3)当AB=AC时,△FDG为等腰直角三角形吗?并说明理由.

manfen5.com 满分网
(1)由比例线段可知,我们需要证明△ADC∽△EGC,由两个角对应相等即可证得; (2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论; (3)是,利用相似三角形的性质即可求得. (1)证明:在△ADC和△EGC中, ∵∠ADC=∠EGC,∠C=∠C, ∴△ADC∽△EGC. ∴.(3分) (2)【解析】 FD与DG垂直.(4分) 证明如下: 在四边形AFEG中, ∵∠FAG=∠AFE=∠AGE=90°, ∴四边形AFEG为矩形. ∴AF=EG. ∵, ∴.(6分) 又∵△ABC为直角三角形,AD⊥BC, ∴∠FAD=∠C=90°-∠DAC, ∴△AFD∽△CGD. ∴∠ADF=∠CDG.(8分) ∵∠CDG+∠ADG=90°, ∴∠ADF+∠ADG=90°. 即∠FDG=90°. ∴FD⊥DG.(10分) (3)【解析】 当AB=AC时,△FDG为等腰直角三角形,理由如下: ∵AB=AC,∠BAC=90°, ∴AD=DC. ∵△AFD∽△CGD, ∴. ∴FD=DG. ∵∠FDG=90°, ∴△FDG为等腰直角三角形.(12分)
复制答案
考点分析:
相关试题推荐
已知:等腰Rt△ABC中,∠A=90°,
(1)如图1,E为AB上任意一点,以CE为斜边作等腰Rt△CDE,连接AD,则有AD∥BC;
(2)若将等腰Rt△ABC改为正△ABC,如图2所示,E为AB边上任一点,△CDE为正三角形,连接AD,上述结论还成立吗?答______
(3)若△ABC为任意等腰三角形,AB=AC,如图3,E为AB上任一点,△DEC∽△ABC,连接AD,请问AD与BC的位置关系怎样?答:______
请你在上述3个结论中,任选一个结论进行证明.

manfen5.com 满分网 查看答案
如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.
(1)请写出图中各对相似三角形(相似比为1除外);
(2)求BP:PQ:QR.

manfen5.com 满分网 查看答案
如图,已知平行四边形ABCD中,P是对角线BD上的一点,过P点作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于M、N、E、F,设a=PM•PE,b=PN•PF.
(1)请判断a与b的大小关系,并说明理由;
(2)当manfen5.com 满分网时,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图,已知AD是△ABC的中线,E是AD的中点,CE的延长线交AB于F,求AF:AB的值.

manfen5.com 满分网 查看答案
(1)如图1,已知正方形ABCD,E是AD上一点,F是BC上一点,G是AB上一点,H是CD上一点,线段EF、GH交于点O,∠EOH=∠C,求证:EF=GH;
(2)如图2,若将“正方形ABCD”改为“菱形ABCD”,其他条件不变,探索线段EF与线段GH的关系并加以证明;
(3)如图3,若将“正方形ABCD”改为“矩形ABCD”,且AD=mAB,其他条件不变,探索线段EF与线段GH的关系并加以证明;
manfen5.com 满分网
附加题:根据前面的探究,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题,画出图形,并证明,若不能,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.