已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.
(1)若线段AM、AN的长是关于x的一元二次方程x
2-2mx+n
2-mn+
m
2=0的两个实数根,求证:AM=AN;
(2)若AN=
,DN=
,求DE的长;
(3)若在(1)的条件下,S
△AMN:S
△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y
2-16ky+10k
2+5=0的两个实数根,求BC的长.
考点分析:
相关试题推荐
如图,已知:在Rt△ABC中,∠ACB=90°,sinB=
,D是BC上一点,DE⊥AB,垂足为E,CD=DE,AC+CD=9.求BC的长.
查看答案
如图①、②在▱ABCD中,∠BAD、∠ABC的平分线AF、BG分别与线段CD两侧的延长线(或线段CD)相交于点F、G,AF与BG相交于点E.
(1)在图①中,求证:AF⊥BG,DF=CG;
(2)在图②中,仍有(1)中的AF⊥BG、DF=CG.若AB=10,AD=6,BG=4,求FG和AF的长.
查看答案
如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并予以说明.
查看答案
如图,点D,E分别在△ABC的边BC,BA上,四边形CDEF是等腰梯形,EF∥CD.EF与AC交于点G,且∠BDE=∠A.
(1)试问:AB•FG=CF•CA成立吗?说明理由;
(2)若BD=FC,求证:△ABC是等腰三角形.
查看答案
已知:如图①,在▱ABCD中,O为对角线BD的中点.过O的直线MN交直线AB于点M,交直线CD于点N;过O的另一条直线PQ交直线AD于点P,交直线BC于点Q,连接PN、MQ.
(1)试证明△PON与△QOM全等;
(2)若点O为直线BD上任意一点,其他条件不变,则△PON与△QOM又有怎样的关系?试就点O在图②所示的位置,画出图形,证明你的猜想;
(3)若点O为直线BD上任意一点(不与点B、D重合),设OD:OB=k,PN=x,MQ=y,则y与x之间的函数关系式为______.
查看答案