满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交...

如图,AB是⊙O的直径,点C在⊙O上,∠BOC=108°,过点C作直线CD分别交直线AB和⊙O于点D、E,连接OE,DE=manfen5.com 满分网AB,OD=2.
(1)求∠CDB的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金分割比manfen5.com 满分网
①写出图中所有的黄金三角形,选一个说明理由;
②求弦CE的长;
③在直线AB或CD上是否存在点P(点C、D除外),使△POE是黄金三角形?若存在,画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.

manfen5.com 满分网
(1)根据等边对等角找到三角形∠CDB和∠OCD的关系,列方程求解; (2)①结合(1)求得各个角的度数,根据题意进行判断; ②根据黄金比求值计算; ③此题要分别考虑OE为底和腰的情况. 【解析】 (1)∵AB是⊙O的直径,DE=AB, ∴OA=OC=OE=DE, 则∠EOD=∠CDB,∠OCE=∠OEC, 设∠CDB=x,则∠EOD=x,∠OCE=∠OEC=2x, 又∠BOC=108°,∴∠CDB+∠OCD=108°, ∴x+2x=108,x=36°. ∴∠CDB=36°. (2)①有三个:△DOE,△COE,△COD. ∵OE=DE,∠CDB=36°, ∴△DOE是黄金三角形; ∵OC=OE,∠COE=180°-∠OCE-∠OEC=36°. ∴△COE是黄金三角形; ∵∠COB=108°, ∴∠COD=72°; 又∠OCD=2x=72°, ∴∠OCD=∠COD. ∴OD=CD, ∴△COD是黄金三角形; ②∵△COD是黄金三角形, ∴, ∵OD=2, ∴OC=-1, ∵CD=OD=2,DE=OC=-1, ∴CE=CD-DE=2-(-1)=3-; ③存在,有三个符合条件的点P1、P2、P3, 如图所示, ⅰ以OE为底边的黄金三角形:作OE的垂直平分线分别交直线AB、CD得到点P1、P2; ⅱ以OE为腰的黄金三角形:点P3与点A重合.
复制答案
考点分析:
相关试题推荐
科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美.某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为    cm.(精确到0.1cm) 查看答案
黄金分割比是=manfen5.com 满分网=0.61803398…,将这个分割比用四舍五入法精确到0.001的近似数是    查看答案
如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为    cm(结果精确到0.1cm).
manfen5.com 满分网 查看答案
已知线段a=10,线段b是线段a上黄金分割的较长部分,则线段b的长是( )
A.5(manfen5.com 满分网+1)
B.5(manfen5.com 满分网-1)
C.10(manfen5.com 满分网-1)
D.5(manfen5.com 满分网+3)
查看答案
为了弘扬雷锋精神,某中学准备在校园内建造一座高2m的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中.如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m,参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732,manfen5.com 满分网≈2.236)是( )
manfen5.com 满分网
A.0.62m
B.0.76m
C.1.24m
D.1.62m
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.