满分5 > 初中数学试题 >

如图抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4). (...

如图抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标.
(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.

manfen5.com 满分网
抛物线y=ax2+bx+c(a≠0)通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标为(h,k);第二象限点的特点是(-,+). 【解析】 (1)把点C(5,4)代入抛物线y=ax2-5ax+4a, 得25a-25a+4a=4,(1分) 解得a=1.(2分) ∴该二次函数的解析式为y=x2-5x+4. ∵y=x2-5x+4=(x-)2-, ∴顶点坐标为P(,-).(4分) (2)(答案不唯一,合理即正确) 如先向左平移3个单位,再向上平移4个单位.(6分) 得到的二次函数解析式为y=(x-+3)2-+4=(x+)2+, 即y=x2+x+2.(8分)
复制答案
考点分析:
相关试题推荐
小明为了通过描点法作出函数y=x2-x+1的图象,先取自变量x的7个值满足:
x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:
 x x1x2 x3 x4x5 x6x7
 y 1 713 21 31  43
记m1=y2-y1,m2=y3-y2,m3=y4-y3,m4=y5-y4,…;s1=m2-m1,s2=m3-m2,s3=m4-m3,…
(1)判断s1、s2、s3之间关系,并说明理由;
(2)若将函数“y=x2-x+1”改为“y=ax2+bx+c(a≠0)”,列出表:
x1 x2 x3 x4x5x6 x7
 y y1 y2y3y4y5y6 y7
其他条件不变,判断s1、s2、s3之间关系,并说明理由;
(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表:
 x x1x2 x3 x4x5 x6x7
 y 1050  110190 290 412  550
由于小明的粗心,表中有一个y值算错了,请指出算错的y值(直接写答案).
查看答案
已知二次函数y=-x2-2x+3的图象与x轴相交于A、B两点,与y轴交于C点(如图所示),点D在二次函数的图象上,且D与C关于对称轴对称,一次函数的图象过点B、D;
(1)求点D的坐标;
(2)求一次函数的解析式;
(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.

manfen5.com 满分网 查看答案
已知抛物线y=x2-2x-3与x轴的右交点为A,与y轴的交点为B,求经过A、B两点的直线的解析式.
查看答案
如果将二次函数y=2x2的图象沿y轴向上平移1个单位,那么所得图象的函数解析式是    查看答案
将抛物y=-(x-1)2向左平移1个单位后,得到的抛物线的解析式是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.