设PD=x,S△PEF=y.根据平行线的性质、全等三角形的判定及相似三角形的判定,证明△PEF≌△QFE、△AEP∽△AQD、△PDF∽△ADQ,相似三角形的比是相似比的平方,再由三角形AQD与梯形ABCD的面积公式求得梯形的高,代入S△PEF=(S△AQD-S△DPF-S△APE)÷2,得出关于x的二次函数方程,根据顶点坐标公式,求得则△PEF面积最大值.
【解析】
设PD=x,S△PEF=y,S△AQD=z,梯形ABCD的高为h,
∵AD=3,BC=4,梯形ABCD面积为7,
∴
解得
∵PE∥DQ,
∴∠PEF=∠QFE,∠EPF=∠PFD,
又∵PF∥AQ,
∴∠PFD=∠EQF,
∴∠EPF=∠EQF,
∵EF=FE,
∴△PEF≌△QFE(AAS),
∵PE∥DQ,
∴△AEP∽△AQD,
同理,△DPF∽△DAQ,
∴=,=()2,
∴S△PEF=(S△AQD-S△DPF-S△APE)÷2,
∴y=-x2+x,
∵y最大值==,即y最大值=.
∴△PEF面积最大值是.