满分5 > 初中数学试题 >

如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒...

如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为______;用含t的式子表示点P的坐标为______
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的manfen5.com 满分网?若存在,求出点T的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由OA=6,AB=4,易得点B的坐标为(6,4);由图可得,点P的横坐标=CN=t,纵坐标=4-NP,NP的值可根据相似比求得; (2)由(1)的结论易得△OMP的高为t,而OM=6-AM=6-t,再根据三角形的面积公式即可求得S与t的函数关系式,再由二次函数的最值求法,求得t为何值时,S有最大值; (3)由(2)求得点M、N的坐标,从而求得直线ON的函数关系式;设点T的坐标为(0,b),可得直线MT的函数关系式,解由两个关系式组成的方程组,可得点直线ON与MT的交点R的坐标;由已知易得S△OCN=×4×3=6,∴S△ORT=S△OCN=2;然后分两种情况考虑:①当点T在点O、C之间时,②当点T在点OC的延长线上,从而求得符合条件的点T的坐标. 【解析】 (1)延长NP交OA于H, ∵矩形OABC, ∴BC∥OA,∠OCB=90°, ∵PN⊥BC, ∴NH∥OC, ∴四边形CNHO是平行四边形, ∴OH=CN, ∵OA=6,AB=4, ∴点B的坐标为(6,4); 由图可得,点P的横坐标=0H=CN=t,纵坐标=4-NP, ∵NP⊥BC, ∴NP∥OC, ∴NP:OC=BN:CB, 即NP:4=(6-t):t, ∴NP=4-t, ∴点P的纵坐标=4-NP=t, 则点P的坐标为(); (其中写对B点得1分)(3分) (2)∵S△OMP=×OM×,(4分) ∴S=×(6-t)×=+2t. =(0<t<6).(6分) ∴当t=3时,S有最大值.(7分) (3)存在. 由(2)得:当S有最大值时,点M、N的坐标分别为:M(3,0),N(3,4), 则直线ON的函数关系式为:. 设点T的坐标为(0,b),则直线MT的函数关系式为:, 解方程组得, ∴直线ON与MT的交点R的坐标为. ∵S△OCN=×4×3=6, ∴S△ORT=S△OCN=2.(8分) ①当点T在点O、C之间时,分割出的三角形是△OR1T1,如图,作R1D1⊥y轴,D1为垂足, 则S△OR1T1=RD1•OT=••b=2. ∴3b2-4b-16=0,b=. ∴b1=,b2=(不合题意,舍去) 此时点T1的坐标为(0,).(9分) ②当点T在OC的延长线上时,分割出的三角形是△R2NE,如图,设MT交CN于点E,由①得点E的横坐标为,作R2D2⊥CN交CN于点D2,则 S△R2NE=•EN•R2D2=••==2. ∴b2+4b-48=0,b=. ∴b1=,b2=(不合题意,舍去). ∴此时点T2的坐标为(0,). 综上所述,在y轴上存在点T1(0,),T2(0,)符合条件.(10分)
复制答案
考点分析:
相关试题推荐
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
manfen5.com 满分网
查看答案
自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

manfen5.com 满分网 查看答案
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

manfen5.com 满分网 查看答案
如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

manfen5.com 满分网 查看答案
在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边BC上(点F与B、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.