满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=...

如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
(1)△EFG的边长是______(用含有x的代数式表示),当x=2时,点G的位置在______
(2)若△EFG与梯形ABCD重叠部分面积是y,求:
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
(3)探求(2)中得到的函数y在x取含何值时,存在最大值,并求出最大值.manfen5.com 满分网
(1)根据等边三角形的三边相等,则△EFG的边长是点E移动的距离;根据等边三角形的三线合一和F点移动速度是E点移动速度的2倍,即可分析出BF=4,此时等边三角形的边长是2,则点G和点D重合; (2)①当0<x≤2时,重叠部分的面积即为等边三角形的面积; ②当2<x≤6时,分两种情况:当2<x<3时和当3≤x≤6时,进行计算; (3)分别求得(2)中每一种情况的最大值,再进一步比较取其中的最大值即可. 【解析】 (1)∵点E、F同时从B点出发,沿射线BC向右匀速移动,且F点移动速度是E点移动速度的2倍, ∴BF=2BE=2x, ∴EF=BF-BE=2x-x=x, ∴△EFG的边长是x; 过D作DH⊥BC于H,得矩形ABHD及直角△CDH,连接DE、DF. 在直角△CDH中,∵∠C=30°,CH=BC-AD=3, ∴DH=CH•tan30°=3×=. 当x=2时,BE=EF=2, ∵△EFG是等边三角形,且DH⊥BC交点H, ∴EH=HF=1 ∴DE=DF==2, ∴△DEF是等边三角形, ∴点G的位置在D点. 故答案为x,D点; (2)①当0<x≤2时,△EFG在梯形ABCD内部,所以y=x2; ②分两种情况: Ⅰ.当2<x<3时,如图1,点E、点F在线段BC上, △EFG与梯形ABCD重叠部分为四边形EFNM, ∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6. ∵在Rt△NMG中,∠G=60°,GN=3x-6, ∴GM=(3x-6), 由勾股定理得:MN=(3x-6), ∴S△GMN=×GM×MN=×(3x-6)×(3x-6)=(3x-6)2, 所以,此时y=x2-(3x-6)2=; Ⅱ.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上, △EFG与梯形ABCD重叠部分为△ECP, ∵EC=6-x, ∴y=(6-x)2=; (3)当0<x≤2时, ∵y=x2,在x>0时,y随x增大而增大, ∴x=2时,y最大=; 当2<x<3时,∵y=,在x=时,y最大=; 当3≤x≤6时,∵y=,在x<6时,y随x增大而减小, ∴x=3时,y最大=. 综上所述:当x=时,y最大=.
复制答案
考点分析:
相关试题推荐
如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为______;用含t的式子表示点P的坐标为______
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的manfen5.com 满分网?若存在,求出点T的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
manfen5.com 满分网
查看答案
自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

manfen5.com 满分网 查看答案
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

manfen5.com 满分网 查看答案
如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.