满分5 > 初中数学试题 >

如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DE∥...

如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DE∥BC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B'DEC',B'C'与AB、AC分别交于点M、N.
(1)证明:△ADE∽△ABC;
(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值?

manfen5.com 满分网
(1)根据DE∥BC得△ADE∽△ABC; (2)S梯形MDEN=S△ADE-S△AMN.根据△ADE∽△ABC,△AMN∽△ABC分别用含x的代数式表示S△ADE,S△AMN得y与x的函数关系式,应用函数性质求解. (1)证明:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C. ∴△ADE∽△ABC.   (2分) (2)【解析】 ∵S△ABC=24,△ADE∽△ABC,相似比为, ∴,所以.    (4分) ∵∠1=∠2,∠1=∠B'MD,∠2=∠B', ∴∠B'=∠B'MD ∴B'D=MD. 又B'D=BD,∴MD=BD. ∴AM=AB-MB=6-2(6-x)=2x-6.    (6分) 同理,△AMN∽△ABC, ∴. (8分) 配方得y=-2(x-4)2+8 ∴当x=4时,y有最大值.   (10分)
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,AB=AC=5,BC=6,动点P从点A出发沿AB向点B移动,(点P与点A、B不重合),作PD∥BC交AC于点D,在DC上取点E,以DE、DP为邻边作平行四边形PFED,使点F到PD的距离manfen5.com 满分网,连接BF,设AP=x.
(1)△ABC的面积等于______
(2)设△PBF的面积为y,求y与x的函数关系,并求y的最大值.

manfen5.com 满分网 查看答案
如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.
(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.
(1)求证:manfen5.com 满分网
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AB∥DC,AB=2,DC=10,AD=BC=5,点M、N分别在AD、BC上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂足分别为E、F.
(1)求梯形ABCD的面积;
(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由;
(3)探究二:四边形MNFE能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.
(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若y=manfen5.com 满分网,要使△DEF为等腰三角形,m的值应为多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.