满分5 > 初中数学试题 >

在边长为6cm的正方形ABCD中,点E,F,G,H分别按A⇒B,B⇒C,C⇒D,...

manfen5.com 满分网在边长为6cm的正方形ABCD中,点E,F,G,H分别按A⇒B,B⇒C,C⇒D,D⇒A的方向同时出发,以1cm/s的速度匀速运动.
(1)在运动中,点E,F,G,H所形成的四边形EFGH为( )
A:平行四边形;B:矩形;C:菱形;D:正方形.

(2)四边形EFGH的面积s(cm2)随运动时间t(s)变化的图象大致是( )
manfen5.com 满分网
(3)写出四边形EFGH的面积S(cm2)关于运动时间t(s)变化的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?
(1)根据全等三角形的性质求出EF=EH,判断出EFGH为菱形,再求出一个较为90度即可; (2)应该是由大变小,进而变大的过程; (3)s=EH2=AE2+AH2,当x=-时,y有最小值. 【解析】 (1)易得EH和EF所在的三角形全等,那么EF=EH,进而求得其它四条边相等,那么EFGH为菱形 由全等得∠AEH=∠EFB ∵∠EFB+∠BEF=90° ∴∠AEH+∠BEF=90° ∴∠HEF=90° ∴EFGH是正方形; 故选D. (2)由图可知,当E、F、G、H为四边形ABCD各边中点时, 四边形EFGH面积最小,可得面积变化经过了“由大变小,再由小变大”的过程, 于是可得四边形EFGH的面积s(cm2)随运动时间t(s)变化的图象大致是抛物线. 故选B. (3)设AE=xcm,∴S=EH2=AE2+AH2=x2+(6-x)2=2x2-12x+36=2(x-3)2+18, 可知当x=3时,S最小值=18.
复制答案
考点分析:
相关试题推荐
已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.
查看答案
如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
(1)当PQ∥AD时,求x的值;
(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;
(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.

manfen5.com 满分网 查看答案
如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DE∥BC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B'DEC',B'C'与AB、AC分别交于点M、N.
(1)证明:△ADE∽△ABC;
(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值?

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC=5,BC=6,动点P从点A出发沿AB向点B移动,(点P与点A、B不重合),作PD∥BC交AC于点D,在DC上取点E,以DE、DP为邻边作平行四边形PFED,使点F到PD的距离manfen5.com 满分网,连接BF,设AP=x.
(1)△ABC的面积等于______
(2)设△PBF的面积为y,求y与x的函数关系,并求y的最大值.

manfen5.com 满分网 查看答案
如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.
(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.