满分5 > 初中数学试题 >

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其...

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.
(1)解方程求已知方程的两根,根据题意确定B、C两点坐标; (2)抛物线过A(-2,0),B(6,0),设交点式,把C(0,4)代入求待定系数即可. 【解析】 (1)解方程x2-10x+24=0,得x1=6,x2=4, ∵OC<OB, ∴B(6,0),C(0,4); (2)∵抛物线与x轴交于A(-2,0),B(6,0) 设抛物线解析式y=a(x+2)(x-6) 把C(0,4)代入解析式,得 4=a(0+2)(0-6),解得a=-, y=-(x+2)(x-6) 即y=-x2+x+4.
复制答案
考点分析:
相关试题推荐
已知点A(1,1)在二次函数y=x2-2ax+b图象上.
(1)用含a的代数式表示b;
(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.
查看答案
已知关于x的方程mx2-(3m-1)x+2m-2=0.
(1)求证:无论m取任何实数时,方程恒有实数根;
(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式;
(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.
查看答案
已知二次函数y=ax2+bx的图象经过点(2,0)、(-1,6)
(1)求二次函数的解析式;
(2)不用列表,在下图中画出函数图象,观察图象写出y>0时,x的取值范围.

manfen5.com 满分网 查看答案
在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.
查看答案
如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c的顶点为A,且经过点B.
(1)求该抛物线的解析式;
(2)若点C(m,manfen5.com 满分网)在抛物线上,求m的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.