满分5 > 初中数学试题 >

已知二次函数y=x2+ax+a-2. (1)求证:不论a为何实数,此函数图象与x...

已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;
(2)设a<0,当此函数图象与x轴的两个交点的距离为manfen5.com 满分网时,求出此二次函数的解析式;
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为manfen5.com 满分网?若存在,求出P点坐标;若不存在,请说明理由.
(1)由判别式△=b2-4ac可证明a为任一实数. (2)先求出两根之和及两根之积的值,再利用两点距离公式求解. (3)利用第2小题中两个交点的距离为来进行计算. 【解析】 (1)因为△=a2-4(a-2)=(a-2)2+4>0, 所以不论a为何实数,此函数图象与x轴总有两个交点. (2)设x1、x2是y=x2+ax+a-2=0的两个根,则x1+x2=-a,x1•x2=a-2,因两交点的距离是, 所以. 即:(x1-x2)2=13 变形为:(x1+x2)2-4x1•x2=13 即(-a)2-4(a-2)=13 整理得:(a-5)(a+1)=0 解方程得:a=5或-1 又∵a<0 ∴a=-1 ∴此二次函数的解析式为y=x2-x-3. (3)设点P的坐标为(x,y), ∵函数图象与x轴的两个交点间的距离等于, ∴AB= ∴S△PAB=AB•|y|= ∴= 即:|y|=3,则y=±3 当y=3时,x2-x-3=3,即(x-3)(x+2)=0 解此方程得:x=-2或3 当y=-3时,x2-x-3=-3,即x(x-1)=0 解此方程得:x=0或1(11分) 综上所述,所以存在这样的P点,P点坐标是(-2,3),(3,3),(0,-3)或(1,-3).
复制答案
考点分析:
相关试题推荐
(1)用配方法把二次函数y=x2-4x+3变成y=(x-h)2+k的形成.
(2)在直角坐标系中画出y=x2-4x+3的图象.
(3)若A(x1,y1),B(x2,y2)是函数y=x2-4x+3图象上的两点,且x1<x2<1,请比较y1,y2的大小关系.(直接写结果)
(4)把方程x2-4x+3=2的根在函数y=x2-4x+3的图象上表示出来.
查看答案
已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.
查看答案
已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围.

manfen5.com 满分网 查看答案
已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标是(-2,0),点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OC<OB)是方程x2-10x+24=0的两个根.
(1)求B、C两点的坐标;
(2)求这个二次函数的解析式.
查看答案
已知点A(1,1)在二次函数y=x2-2ax+b图象上.
(1)用含a的代数式表示b;
(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.