满分5 > 初中数学试题 >

已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0). (1...

已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

manfen5.com 满分网
(1)本题的突破口在于利用△.化简得出(m+2)2>0得出△>0. (2)由求根公式得出x的解,由y=x2-2x1求出关于m的解析式. (1)证明:∵mx2-(3m+2)x+2m+2=0是关于x的一元二次方程, ∴△=[-(3m+2)]2-4m(2m+2)=m2+4m+4=(m+2)2. ∵当m>0时,(m+2)2>0,即△>0. ∴方程有两个不相等的实数根.(2分) (2)【解析】 由求根公式,得. ∴或x=1.(3分) ∵m>0, ∴. ∵x1<x2, ∴x1=1,.(4分) ∴y=x2-2x1=-2×1=. 即y=(m>0)为所求.(5分) (3)【解析】 在同一平面直角坐标系中分别画出y=(m>0)与y=2m(m>0)的图象.(6分) 由图象可得,当m≥1时,y≤2m.(7分)
复制答案
考点分析:
相关试题推荐
已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).
(1)证明4c=3b2
(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.
查看答案
已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围.
查看答案
(1)把二次函数y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网代成y=a(x-h)2+k的形式;
(2)写出抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax2的抛物线经过怎样的变换得到的;
(3)如果抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网中,x的取值范围是0≤x≤3,请画出图象,并试着给该抛物线编一个具有实际意义的情境.(如喷水、掷物、投篮等)
查看答案
已知二次函数y=ax2+bx+c.
(1)若a=2,c=-3,且二次函数的图象经过点(-1,-2),求b的值;
(2)若a=2,b+c=-2,b>c,且二次函数的图象经过点(p,-2),求证:b≥0;
(3)若a+b+c=0,a>b>c,且二次函数的图象经过点(q,-a),试问当自变量x=q+4时,二次函数y=ax2+bx+c所对应的函数值y是否大于0?请证明你的结论.
查看答案
已知二次函数y=x2+2x+c的图象经过点(1,-5).
(1)求c的值;
(2)求函数图象与x轴的交点坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.