满分5 > 初中数学试题 >

已知关于x的一元二次方程x2+bx+c=x有两个实数根x1,x2,且满足x1>0...

已知关于x的一元二次方程x2+bx+c=x有两个实数根x1,x2,且满足x1>0,x2-x1>1.
(1)试证明c>0;
(2)证明b2>2(b+2c);
(3)对于二次函数y=x2+bx+c,若自变量取值为x,其对应的函数值为y,则当0<x<x1时,试比较y与x1的大小.
(1)利用根与系数的关系,来可以求出c和两根之和、两根之积的关系式,然后利用已知条件就可以证明题目结论; (2)利用根与系数的关系得出x1+x2=-(b-1),x1•x2=c,把它们代入(x2-x1)2可得出b2-2b-4c+1,然后再利用(x2-x1)2>1求出b2-2b-4c>0即可证明; (3)本题主要用作差法来比较y与x1的大小,先把x,x1分别代入方程得出关于y,与x1的代数式,再用作差法比较大小. 【解析】 (1)将已知的一元二次方程化为一般形式即x2+(b-1)x+c=0, ∵x1,x2是该方程的两个实数根 ∴x1+x2=-(b-1),x1•x2=c, 而x1>0,x2>x1+1>0, ∴c>0; (2)(x2-x1)2=(x2+x1)2-4x1x2=(b-1)2-4c =b2-2b-4c+1, ∵x2-x1>1,∴(x2-x1)2>1, 于是b2-2b-4c+1>1,即b2-2b-4c>0, ∴b2>2(b+2c); (3)当0<x<x1时,有y>x1, ∵y=x2+bx+c,x12+bx1+c=x1, ∴y-x1=x2+bx+c-(x12+bx1+c)=(x-x1)(x+x1+b), ∵0<x<x1, ∴x-x1<0, 又∵x2-x1>1 ∴x2>x1+1,x1+x2>2x1+1, ∵x1+x2=-(b-1)∴-(b-1)>2x1+1, 于是2x1+b<0 ∵0<x<x1 ∴x+x1+b<0, 由于x-x1<0,x+x1+b<0, ∴(x-x1)(x+x1+b)>0,即y-x1>0, ∴当0<x<x1时,有y>x1.
复制答案
考点分析:
相关试题推荐
已知:关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1<x2).若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量m的取值范围满足什么条件时,y≤2m.

manfen5.com 满分网 查看答案
已知二次函数y=x2+bx-c的图象与x轴两交点的坐标分别为(m,0),(-3m,0)(m≠0).
(1)证明4c=3b2
(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.
查看答案
已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(-3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(3)若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围.
查看答案
(1)把二次函数y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网代成y=a(x-h)2+k的形式;
(2)写出抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网的顶点坐标和对称轴,并说明该抛物线是由哪一条形如y=ax2的抛物线经过怎样的变换得到的;
(3)如果抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x+manfen5.com 满分网中,x的取值范围是0≤x≤3,请画出图象,并试着给该抛物线编一个具有实际意义的情境.(如喷水、掷物、投篮等)
查看答案
已知二次函数y=ax2+bx+c.
(1)若a=2,c=-3,且二次函数的图象经过点(-1,-2),求b的值;
(2)若a=2,b+c=-2,b>c,且二次函数的图象经过点(p,-2),求证:b≥0;
(3)若a+b+c=0,a>b>c,且二次函数的图象经过点(q,-a),试问当自变量x=q+4时,二次函数y=ax2+bx+c所对应的函数值y是否大于0?请证明你的结论.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.