满分5 > 初中数学试题 >

如图所示,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋...

如图所示,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋转后与x轴的正半轴重合,点B的对应点为点A.
(1)直接写出点A的坐标,并求出经过A,O,B三点的抛物线的解析式;
(2)在抛物线的对称轴上是否存在点C,使BC+OC的值最小?若存在,求出点C的坐标,若不存在,请说明理由;
(3)如果点P是抛物线上的一个动点,且在x轴的上方,当点P运动到什么位置时,△PAB的面积最大?求出此时点P的坐标和△PAB的最大面积.

manfen5.com 满分网
(1)首先求出OB的长,由旋转的性质知OB=OA,即可得到A点的坐标,然后用待定系数法即可求得该抛物线的解析式; (2)由于O、A关于抛物线的对称轴对称,若连接AB,则AB与抛物线对称轴的交点即为所求的C点,可先求出直线AB的解析式,联立抛物线对称轴方程即可求得C点的坐标; (3)可过P作y轴的平行线,交直线AB于M;可设出P点的横坐标(根据P点的位置可确定其横坐标的取值范围),根据抛物线和直线AB的解析式,可表示出P、M的纵坐标,即可得到PM的长,以PM为底,A、B纵坐标差的绝对值为高即可得到△PAB的面积,从而得出关于△PAB的面积与P点横坐标的函数关系式,根据所得函数的性质及自变量的取值范围,即可求得△PAB的最大面积及对应的P点坐标. 【解析】 (1)点A的坐标(5,0), 设抛物线的解析式为y=ax2+bx, ∴, ∴,, ∴; (2)由于A、O关于抛物线的对称轴对称,连接AB, 则AB与抛物线对称轴的交点即为所求的C点; 易求得直线AB的解析式为:y=x-, 抛物线的对称轴为=, 当x=时,y=×-=-; ∴点C的坐标为(,-); (3)过P作直线PM∥y轴,交AB于M, 设P(x,-x2+x),则M(x,x-), ∴PM=-x2+x-(x-)=-x2+x+, ∴△PAB的面积:S=S△PAM+S△PBM =PM•(5-)+PM•(+3) =×(-x2+x+)×(5+3) =-x2+x+10 =-(x-1)2+, 所以当x=1,即P(1,)时,△PAB的面积最大,且最大值为.
复制答案
考点分析:
相关试题推荐
已知二次函数y=x2+bx+c+1的图象过点P(2,1).
(1)求证:c=-2b-4;
(2)求bc的最大值;
(3)若二次函数的图象与x轴交于点A(x1,0)、B(x2,0),△ABP的面积是manfen5.com 满分网,求b的值.
查看答案
在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A,其顶点为B.孔明同学用一把宽为3cm带刻度的矩形直尺对抛物线进行如下测量:
①量得OA=3cm;
②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5.
请完成下列问题:
(1)写出抛物线的对称轴;
(2)求抛物线的解析式;
(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S梯形EFGH=manfen5.com 满分网(EF2-9).
manfen5.com 满分网
查看答案
如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax2+bx+c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<NM、PM=MN、PM>MN成立的x的取值范围.
manfen5.com 满分网
查看答案
已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.
(1)求满足条件的所有点B的坐标;
(2)求过O,A,B三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);
(3)在(2)中求出的抛物线上存在点P,使得以O,A,B,P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积.
查看答案
如图,在直角坐标平面内,O为坐标原点,A点的坐标为(1,0),B点在x轴上且在点A的右侧,AB=OA,过点A和B作x轴的垂线分别交二次函数y=x2图象于点C和D,直线OC交BD于M,直线CD交y轴于点H.记C、D的横坐标分别为xc,xD,于点H的纵坐标yH
(1)证明:①S△CMD:S梯形ABMC=2:3;②xc•xD=-yH
(2)若将上述A点坐标(1,0)改为A点坐标(t,0)(t>0),其他条件不变,结论S△CMD:S梯形ABMC=2:3是否仍成立?请说明理由.
(3)若A的坐标(t,0)(t>0),又将条件y=x2改为y=ax2(a>0),其他条件不变,那么xc,xD和yH又有怎样的数量关系?写出关系式,并证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.