如图,直线y=hx+d与x轴和y轴分别相交于点A(-1,0),B(0,1),与双曲线y=
在第一象限相交于点C;以AC为斜边、∠CAO为内角的直角三角形,与以CO为对角线、一边在x轴上的矩形面积相等;点C,P在以B为顶点的抛物线y=mx
2+nx+k上;直线y=hx+d、双曲线y=
和抛物线y=ax
2+bx+c同时经过两个不同的点C,D.
(1)确定t的值;
(2)确定m,n,k的值;
(3)若无论a,b,c取何值,抛物线y=ax
2+bx+c都不经过点P,请确定P的坐标.
考点分析:
相关试题推荐
如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O
1、A
1、C
1、B
1,得到如图2的梯形O
1A
1B
1C
1.设梯形O
1A
1B
1C
1的面积为S,A
1、B
1的坐标分别为(x
1,y
1)、(x
2,y
2).用含S的代数式表示x
2-x
1,并求出当S=36时点A
1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
查看答案
如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).
(1)求经过A、B、C三点的抛物线的解析式;
(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;
(3)若抛物线的顶点为P,连接PC、PD,判断四边形CEDP的形状,并说明理由.
查看答案
已知二次函数的图象与x轴有且只有一个交点A(-2,0),与y轴的交点为B(0,4),且其对称轴与y轴平行.
(1)求该二次函数的解析式,并在所给出坐标系中画出这个二次函数的大致图象;
(2)在该二次函数位于A、B两点之间的图象上取上点M,过点M分别作x轴、y轴的垂线段,垂足分别为点C、D.求矩形MCOD的周长的最小值和此时点M的坐标.
查看答案
如图,在平面直角坐标系中,点A的坐标为(1,
),△AOB的面积是
.
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案
已知抛物线y=-x
2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x
2-6x+5=0的两个实数根,且m<n.
(1)求抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;
(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积相等的两部分,求P点的坐标.
查看答案