满分5 > 初中数学试题 >

如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-...

如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发ts时,△EBF的面积为ycm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题:
(1)梯形上底的长AD=______cm,梯形ABCD的面积______cm2
(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);
(3)当t为何值时,△EBF与梯形ABCD的面积之比为1:2?
manfen5.com 满分网
(1)此题的关键是要理解分段函数的意义,OM段是曲线,说明E、F分别在BA、BC上运动,此时y、t的关系式是二次函数;MN段是线段,且平行于t轴,那么此时F运动到终点C,且E在线段AD上运动,此时y为定值;NP段是线段,此时y、t的函数关系式是一次函数,此时E在线段CD上运动,此时y值随t的增大而减小; 根据上面的分析,可知在MN之间时,E在线段AD上运动,在这个区间E点运动了2秒,所以AD=2cm; 根据OM段的函数图象知:当t=5时,E、F分别运动到A、C两点,那么AB=BC=5;根据MN段函数图象知:此时△BEF的面积为10,可据此求出梯形的高为4,进而可根据梯形的面积公式求出梯形ABCD的面积; (2)利用待定系数法分别求两个解析式; (3)当E在AD上运动时,△EBF的面积为10,显然不符合题意,所以当△EBF与梯形ABCD的面积之比为1:2时,E点一定在线段BA或线段CD上,可将△EBF的面积(即梯形面积的一半)代入(2)题求得的两个函数关系式中,即可得到所求的t值. 【解析】 (1)由图可知:OM段为抛物线,此时点E、F分别在BA、BC上运动; 当E、A重合,F、C重合时,t=5s, ∴AB=BC=5cm; MN段是线段,且平行于t轴,此时F运动到终点C,E点在线段AD上运动; ∴AD=1×2=2cm,CD=2×S△BEF÷BC=2×10÷5=4cm; ∴S梯形ABCD=(AD+BC)•CD=×(2+5)×4=14cm2; 故填:2,14; (2)当点E在BA上运动时,设抛物线的解析式为y=at2,把M点的坐标(5,10)代入得a=, ∴y=t2,0≤t≤5; 当点E在DC上运动时,设直线的解析式为y=kt+b, 把P(11,0),N(7,10)代入,得11k+b=0,7k+b=10,解得k=-,b=, 所以y=-t+,(7<t≤11) (3)当0<t≤5时,t2=×14, ∴t=; 当7<t≤11时,-t+=×14, ∴t=8.2; ∴t=s或8.2s时,△BEF与梯形ABCD的面积比为1:2.
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=manfen5.com 满分网的图象与y轴交于点A,与x轴交于B、C两点,其对称轴与x轴交于点D,连接AC.
(1)点A的坐标为______,点C的坐标为______
(2)线段AC上是否存在点E,使得△EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;
(3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得△PAC的面积为S,则S取何值时,相应的点P有且只有2个?

manfen5.com 满分网 查看答案
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:函数y=ax2+x+1的图象与x轴只有一个公共点.
(1)求这个函数关系式;
(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上?若在抛物线上,求出M点的坐标;若不在,请说明理由.

manfen5.com 满分网 查看答案
将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0).
(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,直线y=hx+d与x轴和y轴分别相交于点A(-1,0),B(0,1),与双曲线y=manfen5.com 满分网在第一象限相交于点C;以AC为斜边、∠CAO为内角的直角三角形,与以CO为对角线、一边在x轴上的矩形面积相等;点C,P在以B为顶点的抛物线y=mx2+nx+k上;直线y=hx+d、双曲线y=manfen5.com 满分网和抛物线y=ax2+bx+c同时经过两个不同的点C,D.
(1)确定t的值;
(2)确定m,n,k的值;
(3)若无论a,b,c取何值,抛物线y=ax2+bx+c都不经过点P,请确定P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.