满分5 > 初中数学试题 >

如图,抛物线y1=ax2-2ax+b经过A(-1,0),C(0,)两点,与x轴交...

如图,抛物线y1=ax2-2ax+b经过A(-1,0),C(0,manfen5.com 满分网)两点,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=manfen5.com 满分网y2,求y2与x的函数关系式,并直接写出自变量x的取值范围;
(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E、G,与(2)中的函数图象交于点F、H.问四边形EFHG能否成为平行四边形?若能,求m、n之间的数量关系;若不能,请说明理由.
manfen5.com 满分网
(1)将A、C的坐标代入抛物线的解析式中,即可求出y1的函数解析式; (2)过M作MN⊥x轴于N,根据抛物线y1的函数解析式,即可得到M点的坐标,可分别在Rt△MPN和Rt△MBN中,用勾股定理表示出MN的长,由此可得到关于PM、x的函数关系式;由于∠MPQ=∠MBP=45°,易证得△MPQ∽△MBP,根据相似三角形得到的比例线段即可得到关于PM、y2的关系式,联立两式即可求出y2、x的函数关系式; (3)根据两根抛物线的解析式和两条直线的解析式,可求出E、F、G、H四点的坐标,即可得到EF、GH的长,由于EF∥GH,若四边形EFHG是平行四边形,那么必有EF=GH,可据此求出m、n的数量关系. 【解析】 (1)∵抛物线y1=ax2-2ax+b经过A(-1,0),C(0,)两点; ∴, 解得. ∴抛物线的解析式为y1=-x2+x+; (2)作MN⊥AB,垂足为N. 由y1=-x2+x+,易得M(1,2),N(1,0),A(-1,0),B(3,0); ∴AB=4,MN=BN=2,MB=2,∠MBN=45°; 根据勾股定理有:BM2-BN2=PM2-PN2, ∴(2)2-22=PM2-(1-x)2…①; 又∠MPQ=45°=∠MBP,∠PMQ=∠BMP(公共角), ∴△MPQ∽△MBP, ∴PM2=MQ•MB=y2•2=2y2…②; 由①②得:y2=x2-x+; ∵0≤x<3, ∴y2与x的函数关系式为y2=x2-x+(0≤x<3); (3)四边形EFHG可以为平行四边形,m、n之间的数量关系是:m+n=2(0≤m≤2且m≠1); ∵点E、G是抛物线y1=-x2+x+分别与直线x=m,x=n的交点, ∴点E、G坐标为E(m,-m2+m+),G(n,-n2+n+); 同理,点F、H坐标为F(m,m2-m+),H(n,n2-n+). ∴EF=m2-m+-(-m2+m+)=m2-2m+1,GH=n2-n+-(-n2+n+)=n2-2n+1; ∵四边形EFHG是平行四边形,EF=GH, ∴m2-2m+1=n2-2n+1, ∴(m+n-2)(m-n)=0; ∵由题意知m≠n, ∴m+n=2(m≠1); 因此四边形EFHG可以为平行四边形,m、n之间的数量关系是m+n=2(0≤m≤2且m≠1).
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,点O是坐标原点,点P(m,-1)(m>0).连接OP,将线段OP绕点O按逆时针方向旋转90°得到线段OM,且点M是抛物线y=ax2+bx+c的顶点.
(1)若m=1,抛物线y=ax2+bx+c经过点(2,2),当0≤x≤1时,求y的取值范围;
(2)已知点A(1,0),若抛物线y=ax2+bx+c与y轴交于点B,直线AB与抛物线y=ax2+bx+c有且只有一个交点,请判断△BOM的形状,并说明理由.
查看答案
如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx+c过A、C、O三点.
(1)求点C的坐标和抛物线的解析式;
(2)过点B作直线与x轴交于点D,且OB2=OA•OD,求证:DB是⊙C的切线;
(3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为直角梯形?如果存在,求出点P的坐标;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图,已知抛物线y=ax2-4x+c经过点A(0,-6)和B(3,-9).
(1)求出抛物线的解析式;
(2)写出抛物线的对称轴方程及顶点坐标;
(3)点P(m,m)与点Q均在抛物线上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q的坐标;
(4)在满足(3)的情况下,在抛物线的对称轴上寻找一点M,使得△QMA的周长最小.
查看答案
如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

manfen5.com 满分网 查看答案
如图,已知二次函数图象的顶点坐标为(2,0),直线y=x+1与二次函数的图象交于A,B两点,其中点A在y轴上.
(1)二次函数的解析式为y=______
(2)证明:点(-m,2m-1)不在(1)中所求的二次函数的图象上;
(3)若C为线段AB的中点,过C点作CE⊥x轴于E点,CE与二次函数的图象交于D点.
①y轴上存在点K,使以K,A,D,C为顶点的四边形是平行四边形,则K点的坐标是______
②二次函数的图象上是否存在点p,使得S三角形POE=2S三角形ABD?求出P点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.