满分5 > 初中数学试题 >

在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于点A、B点A在点B的...

在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于点A、B点A在点B的左侧,与y轴的正半轴交于点C,顶点为E.
(1)若b=2,c=3,求此时抛物线顶点E的坐标;
(2)将(1)中的抛物线向下平移,若平移后,在四边形ABEC中满足S△BCE=S△ABC,求此时直线BC的解析式;
(3)将(1)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足S△BCE=2S△AOC,且顶点E恰好落在直线y=-4x+3上,求此时抛物线的解析式.
(1)已知了b、c的值,即可确定抛物线的解析式,通过配方或用公式法即可求出其顶点E的坐标; (2)在抛物线向下平移的过程中,抛物线的形状没有发生变化,所以b值不变,变化的只是c的值;可用c表示出A、B、C的坐标,若S△BCE=S△ABC,那么两个三角形中BC边上的高就应该相等;可过E作EF∥BC,交x轴于F,根据平行线分线段成比例定理知AB=BF,由此可求出BF的长;易证得Rt△EDF∽Rt△COB,根据相似三角形所得到的成比例线段即可求出c的值,也就确定了抛物线的解析式,即可得到C、B的坐标,进而可用待定系数法求出直线BC的解析式; (3)可设平移后抛物线的解析式为y=-(x-h)2+k,与(2)的方法类似,也是通过作平行线,求出BF、DF的长,进而根据相似三角形来求出h、k的关系式,进而可根据E点在直线y=-4x+3上求出h、k的值,进而可确定平移后的抛物线解析式. 【解析】 (1)当b=2,c=3时,抛物线的解析式为y=-x2+2x+3,即y=-(x-1)2+4; ∴抛物线顶点E的坐标为(1,4)(2分) (2)将(1)中的抛物线向下平移,则顶点E在对称轴x=1上,有b=2, ∴抛物线的解析式为y=-x2+2x+c(c>0); ∴此时,抛物线与y轴的交点为C(0,c),顶点为E(1,1+c); ∵方程-x2+2x+c=0的两个根为,, ∴此时,抛物线与x轴的交点为A(1-,0),B(1+,0); 如图,过点E作EF∥CB与x轴交于点F,连接CF,则S△BCE=S△BCF ∵S△BCE=S△ABC, ∴S△BCF=S△ABC ∴ 设对称轴x=1与x轴交于点D, 则 由EF∥CB,得∠EFD=∠CBO ∴Rt△EDF∽Rt△COB,有 ∴结合题意,解得 ∴点, 设直线BC的解析式为y=mx+n,则 ,解得; ∴直线BC的解析式为;(6分) (3)根据题意,设抛物线的顶点为E(h,k),h>0,k>0; 则抛物线的解析式为y=-(x-h)2+k, 此时,抛物线与y轴的交点为C,(0,-h2+k), 与x轴的交点为,,、 过点E作EF∥CB与x轴交于点F,连接CF, 则S△BCE=S△BCF; 由S△BCE=2S△AOC, ∴S△BCF=2S△AOC,得; 设该抛物线的对称轴与x轴交于点D; 则; 于是,由Rt△EDF∽Rt△COB,有 ∴,即2h3+(2k-3h2)-3hk=0, (2h-)(h-2)=0, ∵>h>0, 解得①,h=2(舍去), ∵点E(h,k)在直线y=-4x+3上,有k=-4h+3② ∴由①②,结合题意,解得 有k=1, ∴抛物线的解析式为.(10分)
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,已知抛物线y=manfen5.com 满分网+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
manfen5.com 满分网
查看答案
(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
manfen5.com 满分网如图所示,抛物线与x轴交于点A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3).以AB为直径作⊙M,过抛物线上一点P作⊙M的切线PD,切点为D,并与⊙M的切线AE相交于点E,连接DM并延长交⊙M于点N,连接AN、AD.
(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形EAMD的面积为manfen5.com 满分网,求直线PD的函数关系式;
(3)抛物线上是否存在点P,使得四边形EAMD的面积等于△DAN的面积?若存在,求出点P的坐标;若不存在,说明理由.
查看答案
如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.