满分5 > 初中数学试题 >

如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=...

如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)连接EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.

manfen5.com 满分网
(1)根据OA、AB、OC的长,即可得到A、B、C三点的坐标,进而可用待定系数法求出抛物线的解析式; (2)此题要通过构造全等三角形求解;过B作BM⊥x轴于M,由于∠EBF是由∠DBC旋转而得,所以这两角都是直角,那么∠EBF=∠ABM=90°,根据同角的余角相等可得∠EBA=∠FBM;易知BM=OA=AB=2,由此可证得△FBM≌△EBA,则AE=FM;CM的长易求得,关键是FM即AE的长;设抛物线的顶点为G,由于G点在线段AB的垂直平分线上,若过G作GH⊥AB,则GH是△ABE的中位线,G点的坐标易求得,即可得到GH的长,从而可求出AE的长,即可由CF=CM+FM=AE+CM求出CF的长; (3)由(2)的全等三角形易证得BE=BF,则△BEF是等腰直角三角形,其面积为BF平方的一半;△BFC中,以CF为底,BM为高即可求出△BFC的面积;可设CF的长为a,进而表示出FM的长,由勾股定理即可求得BF的平方,根据上面得出的两个三角形的面积计算方法,即可得到关于S、a的函数关系式,根据函数的性质即可求出S的最小值及对应的CF的长. 【解析】 (1)由题意可得A(0,2),B(2,2),C(3,0), 设所求抛物线的解析式为y=ax2+bx+c, 则, 解得;(3分) ∴抛物线的解析式为y=-+x+2;(1分) (2)设抛物线的顶点为G, 则G(1,),过点G作GH⊥AB,垂足为H, 则AH=BH=1,GH=-2=; ∵EA⊥AB,GH⊥AB, ∴EA∥GH; ∴GH是△BEA的中位线, ∴EA=2GH=;(2分) 过点B作BM⊥OC,垂足为M,则BM=OA=AB; ∵∠EBF=∠ABM=90°, ∴∠EBA=∠FBM=90°-∠ABF, ∴Rt△EBA≌Rt△FBM, ∴FM=EA=; ∵CM=OC-OM=3-2=1, ∴CF=FM+CM=(2分); (3)设CF=a,则FM=a-1, ∴BF2=FM2+BM2=(a-1)2+22=a2-2a+5, ∵△EBA≌△FBM, ∴BE=BF, 则S△BEF=BE•BF=(a2-2a+5),(1分) 又∵S△BFC=FC•BM=×a×2=a,(1分) ∴S=(a2-2a+5)-a=a2-2a+, 即S=(a-2)2+;(1分) ∴当a=2(在0<a<3范围内)时,S最小值=.(1分)
复制答案
考点分析:
相关试题推荐
如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

manfen5.com 满分网 查看答案
如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:抛物线y=(k-1)x2+2kx+k-2与x轴有两个不同的交点.
(1)求k的取值范围;
(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;
(3)在(2)的条件下,若在抛物线和x轴所围成的封闭图形内画出一个最大的正方形,使得正方形的一边在x轴上,其对边的两个端点在抛物线上,试求出这个最大正方形的边长?

manfen5.com 满分网 查看答案
如图,以A为顶点的抛物线与y轴交于点B、已知A、B两点的坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是否总成立?请说明理由.
manfen5.com 满分网
查看答案
已知抛物线y=x2+bx+c交x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D.
(1)求b、c的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OE⊥BC交抛物线的对称轴于点E.求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的manfen5.com 满分网?若存在,求点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.