满分5 > 初中数学试题 >

如图,把抛物线y=-x2(虚线部分)向右平移1个单位长度,再向上平移1个单位长度...

如图,把抛物线y=-x2(虚线部分)向右平移1个单位长度,再向上平移1个单位长度,得出抛物线l1,抛物线l2与抛物线l1关于y轴对称.点A,O,B分别是抛物线l1,l2与x轴的交点,D,C分别是抛物线l1,l2的顶点,线段CD交y轴于点E.
(1)分别写出抛物线l1与l2的解析式;
(2)设P使抛物线l1上与D,O两点不重合的任意一点,Q点是P点关于y轴的对称点,试判断以P,Q,C,D为顶点的四边形是什么特殊的四边形?请说明理由.
(3)在抛物线l1上是否存在点M,使得S△ABM=S四边形AOED?如果存在,求出M点的坐标;如果不存在,请说明理由.

manfen5.com 满分网
(1)根据二次函数图象“左加右减,上加下减”的平移规律即可得到l1的解析式; 由于l1、l2关于y轴对称,那它们的顶点坐标关于y轴对称,而开口大小、开口方向、与y轴的交点都相同,据此可求出l2的解析式; (2)根据轴对称的性质,很明显的可以看出四边形PQCD是等腰梯形;若P为l1的对称轴与抛物线l2的交点时,PQ=CD,此时四边形PQCD是矩形; (3)根据抛物线l1的解析式,可求出A、D、E的坐标,进而可求得梯形AOED的面积,即可得到△ABM的面积,由于AB是定长,那么根据△ABM的面积即可求出M点纵坐标的绝对值,将其代入抛物线l1的解析式中,即可求得M点的坐标. 【解析】 (1)l1:y=-(x-1)2+1(或y=-x2+2x),(1分) l2:y=-(x+1)2+1(或y=-x2-2x);(2分) (2)以P,Q,C,D为顶点的四边形为矩形或等腰梯形,(3分) 理由:∵点C与点D,点P与点Q关于y轴对称, ∴CD∥PQ∥x轴. ①当P点是l2的对称轴与l1的交点时,点P,Q的坐标分别为(-1,-3)和(1,-3),而点C,D的坐标分别为(-1,1)和(1,1), 所以,CD=PQ,CP⊥CD,四边形CPQD是矩形;(4分) ②当P点不是l2的对称轴与l1的交点时,根据轴对称性质, 有:CP=DQ(或CQ=DPS),但CD≠PQ, ∴四边形CPQD(四边形CQPD)是等腰梯形.(5分) (3)存在,设满足条件的M点坐标为(x,y),连接MA,MB,AD,依题意得: A(2,0),B(-2,0),E(0,1), ,(6分) ①当y>0时,,(7分) 将y=, ∴,(8分) ②当y<0时,,(9分) , ∴. (10分)
复制答案
考点分析:
相关试题推荐
如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.
(1)填空:A点坐标为(____________),D点坐标为(____________);
(2)若抛物线y=manfen5.com 满分网x2+bx+c经过C,D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-manfen5.com 满分网,顶点坐标是(-manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.
(1)求直线AB和这条抛物线的解析式;
(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;
(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.

manfen5.com 满分网 查看答案
如图,已知二次函数y=-manfen5.com 满分网+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.

manfen5.com 满分网 查看答案
如图所示,已知直线y=manfen5.com 满分网x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的manfen5.com 满分网?若存在,试求出此时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知点A(-3,0)和B(1,0),直线y=kx-4经过点A并且与y轴交于点C.
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式和对称轴;
(3)半径为1个单位长度的动圆⊙P的圆心P始终在抛物线的对称轴上.当点P的纵坐标为5时,将⊙P以每秒1个单位长度的速度在抛物线的对称轴上移动.那么,经过几秒,⊙P与直线AC开始有公共点?经过几秒后,⊙P与直线AC不再有公共点?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.