满分5 > 初中数学试题 >

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-4),与x轴交于A、B...

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-4),与x轴交于A、B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于点E,依次连接A、D、B、E,点Q为线段AB上一个动点(Q与A、B两点不重合),过点Q作QF⊥AE于F,QG⊥DB于G,请判断manfen5.com 满分网是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点H是线段EQ上一点,过点H作MN⊥EQ,MN分别与边AE、BE相交于M、N,(M与A、E不重合,N与E、B不重合),请判断manfen5.com 满分网是否成立?若成立,请给出证明;若不成立,请说明理由.

manfen5.com 满分网
(1)可将抛物线的解析式设为顶点式,然后将A点坐标代入,即可求得抛物线的解析式; (2)根据两对相似三角形:△AQF、△ABE和△BGQ、△BDA得出的对应成比例线段,即可求出所求的代数式是否为定值; (3)易证得△EMN∽△FQE,得①,下面证,需通过构建相似三角形求解; 过Q作QP⊥BE于P,则四边形FQPE是矩形,FE=QP②;已知E在AB的垂直平分线上,可得:△AEB是等腰Rt△,进一步可知△AFQ、△QEB也是等腰Rt△;易证得△FAQ∽△PQB,得③,联立①②③即可证得所求的结论. 【解析】 (1)设抛物线的解析式为y=a(x-1)2-4,(1分) 将A(-1,0)代入解析式得:0=a(-1-1)2-4, ∴a=1, ∵抛物线的解析式为y=(x-1)2-4, 即y=x2-2x-3;(3分) (2)是定值,+=1,(4分) ∵AB是直径, ∴∠AEB=90°, ∵QF⊥AE, ∴QF∥BE, ∴△AQF∽△ABE, ∴=, 同理:=, ∴+=+===1;(6分) (3)∵直线EC为抛物线的对称轴, ∴EC垂直平分AB, ∴AE=EB, ∵∠AEB=90°, ∴△AEB为等腰直角三角形, ∴∠EAB=∠EBA=45°,(7分) 过点Q作QP⊥BE于P,如图(8分) 由已知及作法可知,四边形FQPE是矩形, ∴QP=FE且QP∥FE, 在△AQF和△QBP中, ∵∠EAB=∠BQP=45°, ∴QP=BP=FE且△AQF∽△QBP, ∴=, ∴==①, 在△QFE和△MEN中, ∵MN⊥EQ, ∴∠MNE+∠HEN=90°, ∵∠FEQ+∠HEN=90°, ∴∠MNE=∠FEQ, 又∵∠QFE=∠MEN=90°, ∴△EFQ∽△NEM, ∴=②, 由①、②知:=.(11分)
复制答案
考点分析:
相关试题推荐
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

manfen5.com 满分网 查看答案
如图:二次函数y=-x2+ax+b的图象与x轴交于A(-manfen5.com 满分网,0),B(2,0)两点,且与y轴交于点C.
(1)求该抛物线的解析式,并判断△ABC的形状;
(2)在x轴上方的抛物线上有一点D,且A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;
(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
在平面直角坐标系中,点A、B的坐标分别为(10,0),(2,4).
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的解析式;
(2)若P为抛物线上异于C的点,且△OAP是直角三角形,请直接写出点P的坐标;
(3)若抛物线顶点为D,对称轴交x轴于点M,探究:抛物线对称轴上是否存在异于D的点Q,使△AQD是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
已知二次函数y1=x2-2x-3及一次函数y2=x+m.
(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;
(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你在图中画出这个新图象,并求出新图象与直线y2=x+m有三个不同公共点时m的值;
(3)当0≤x≤2时,函数y=y1+y2+(m-2)x+3的图象与x轴有两个不同公共点,求m的取值范围.

manfen5.com 满分网 查看答案
如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1.
(1)求a,b,c的值;
(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.
①试求出S与t之间的函数关系式,并求出S的最大值;
②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.