满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y...

如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BD∥CA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数的值; (2)先求出直线AC的解析式,由于BD∥AC,那么直线BD的斜率与直线AC的相同,可据此求出直线BD的解析式,联立抛物线的解析式即可求出D点的坐标;由图知四边形ACBD的面积是△ABC和△ABD的面积和,由此可求得其面积; (3)易知OA=OB=OC=1,那么△ACB是等腰直角三角形,由于AC∥BD,则∠CBD=90°;根据B、C的坐标可求出BC、BD的长,进而可求出它们的比例关系;若以A、M、N为顶点的三角形与△BCD相似,那么两个直角三角形的对应直角边应该成立,可据此求出△AMN两条直角边的比例关系,连接抛物线的解析式即可求出M点的坐标. 【解析】 (1)依题意,得:,解得; ∴抛物线的解析式为:y=-x2+1; (2)易知A(-1,0),C(0,1),则直线AC的解析式为:y=x+1; 由于AC∥BD,可设直线BD的解析式为y=x+h,则有:1+h=0,h=-1; ∴直线BD的解析式为y=x-1;联立抛物线的解析式得: ,解得,; ∴D(-2,-3); ∴S四边形ACBD=S△ABC+S△ABD=×2×1+×2×3=4; (3)∵OA=OB=OC=1, ∴△ABC是等腰Rt△; ∵AC∥BD, ∴∠CBD=90°; 易求得BC=,BD=3; ∴BC:BD=1:3; 由于∠CBD=∠MNA=90°,若以A、M、N为顶点的三角形与△BCD相似,则有: △MNA∽△CBD或△MNA∽△DBC,得: =或=3; 即MN=AN或MN=3AN; 设M点的坐标为(x,-x2+1), ①当x>1时,AN=x-(-1)=x+1,MN=x2-1; ∴x2-1=(x+1)或x2-1=3(x+1) 解得x=,x=-1(舍去)或x=4,x=-1(舍去); ∴M点的坐标为:M(,-)或(4,-15); ②当x<-1时,AN=-1-x,MN=x2-1; ∴x2-1=(-x-1)或x2-1=3(-x-1) 解得x=,x=-1(两个都不合题意,舍去)或x=-2,x=-1(舍去); ∴M(-2,-3); 故存在符合条件的M点,且坐标为:M(,-)或(4,-15)或(-2,-3).
复制答案
考点分析:
相关试题推荐
已知:如图一次函数y=manfen5.com 满分网x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=manfen5.com 满分网x2+bx+c的图象与一次函数y=manfen5.com 满分网x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).
(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点manfen5.com 满分网
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;
(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?

manfen5.com 满分网 查看答案
如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=manfen5.com 满分网时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
manfen5.com 满分网
查看答案
如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2.
(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由;manfen5.com 满分网
(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?
manfen5.com 满分网
查看答案
如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.