满分5 > 初中数学试题 >

如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx...

如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的manfen5.com 满分网?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据C点的坐标可确定直线AD的解析式,进而可求出B点坐标,将B、C、O三点坐标代入抛物线中,即可求得此二次函数的解析式; (2)此题的关键是求出P点的坐标;△PON中,ON的长为定值,若△PON的面积最大,那么P点离ON的距离最远,即P点为抛物线的顶点,根据(1)所得的抛物线解析式即可求得P点的坐标,进而可求出α的正切值; (3)设出点P的横坐标,根据抛物线的解析式可表示出P点的纵坐标;根据直线AD和抛物线的解析式可求出A、N的坐标;以ON为底,P点纵坐标为高可得到△OPN的面积,以OA为底,P点横坐标为高可得到△OAP的面积,根据题目给出的△POA和△PON的面积关系即可求出P点的横坐标,进而可求出P点的坐标. 【解析】 (1)将点C(2,2)代入直线y=kx+4,可得k=-1 所以直线的解析式为y=-x+4 当x=1时,y=3, 所以B点的坐标为(1,3) 将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c, 可得 解得, 所以所求的抛物线为y=-2x2+5x. (2)因为ON的长是一定值, 所以当点P为抛物线的顶点时,△PON的面积最大, 又该抛物线的顶点坐标为(),此时tan∠PON=. (3)存在; 把x=0代入直线y=-x+4得y=4,所以点A(0,4) 把y=0代入抛物线y=-2x2+5x 得x=0或x=,所以点N(,0) 设动点P坐标为(x,y), 其中y=-2x2+5x (0<x<) 则得:S△OAP=|OA|•x=2x S△ONP=|ON|•y=•(-2x2+5x)=(-2x2+5x) 由S△OAP=S△ONP, 即2x=•(-2x2+5x) 解得x=0或x=1,舍去x=0 得x=1,由此得y=3 所以得点P存在,其坐标为(1,3).
复制答案
考点分析:
相关试题推荐
下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).
(1)求出图象与x轴的交点A,B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=manfen5.com 满分网S△MAB?若存在,求出P点的坐标;若不存在,请说明理由;
(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c(a≠0)顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线manfen5.com 满分网作垂线,垂足为M,连FM(如图).
(1)求字母a,b,c的值;
(2)在直线x=1上有一点manfen5.com 满分网,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立?若存在请求出t值,若不存在请说明理由.

manfen5.com 满分网 查看答案
已知抛物线y=x2+bx+c与直线y=x+1有两个交点A、B.
(1)当AB的中点落在y轴时,求c的取值范围;
(2)当AB=2manfen5.com 满分网,求c的最小值,并写出c取最小值时抛物线的解析式;
(3)设点P(t,T)在AB之间的一段抛物线上运动,S(t)表示△PAB的面积.
①当AB=2manfen5.com 满分网,且抛物线与直线的一个交点在y轴时,求S(t)的最大值,以及此时点P的坐标;
②当AB=m(正常数)时,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此时点P的坐标(t,T)满足的关系,若不存在说明理由.

manfen5.com 满分网 查看答案
矩形OBCD在如图所示的平面直角坐标系中,其中三个顶点分别是O(0,0),B(0,3),D(-2,0),直线AB交x轴于点A(1,0).
(1)求直线AB的解析式;
(2)求过A、B、C三点的抛物线的解析式,并写出其顶点E的坐标;
(3)过点E作x轴的平行线EF交AB于点F,将直线AB沿x轴向右平移2个单位,与x轴交于点G,与EF交于点H,请问过A、B、C三点的抛物线上是否存在点P,使得S△PAG=manfen5.com 满分网S△PEH?若存在,求点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图所示,抛物线y=-x2+2x+3与x轴交于A、B两点,直线BD的函数表达式为manfen5.com 满分网,抛物线的对称轴l与直线BD交于点C、与x轴交于点E.
(1)求A、B、C三个点的坐标;
(2)点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.
①求证:AN=BM;
②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.