满分5 > 初中数学试题 >

如图所示,已知直线y=kx-1与抛物线y=ax2+bx+c交于A(-3,2)、B...

如图所示,已知直线y=kx-1与抛物线y=ax2+bx+c交于A(-3,2)、B(0,-1)两点,抛物线的顶点为C(-1,-2),对称轴交直线AB于点D,连接OC.
(1)求k的值及抛物线的解析式;
(2)若P为抛物线上的点,且以P、A、D三点构成的三角形是以线段AD为一条直角边的直角三角形,请求出满足条件的点P的坐标;
(3)在(2)的条件下所得的三角形是否与△OCD相似?请直接写出判断结果,不必写出证明过程.

manfen5.com 满分网
(1)将点A的坐标代入直线AB的解析式中,即可确定k的值;根据A、B的坐标,可用待定系数法确定抛物线的解析式. (2)根据抛物线的解析式,易求得D点坐标,可得OB=OD,即△OBD是等腰直角三角形;若△PAD是以AD为直角边的直角三角形,那么可分两种情况: ①以D为直角顶点,过D作直线l1⊥AD,直线l1与抛物线的交点即为所求的P点,设直线l1与y轴的交点为E,由于△ODB是等腰直角三角形,故△ODE也是等腰直角三角形,即OD=OE,由此可得E点坐标,进而可根据D、E的坐标求出直线l1的解析式,联立抛物线的解析式,即可得P点坐标; ②以A为直角顶点,过A作直线l2⊥AD,同理直线l2与抛物线的交点也符合P点的要求,由于直线l1∥直线l2,根据直线l2的斜率和A点的坐标,即可求出直线l2的解析式,然后联立抛物线的解析式,可得P点的坐标. (3)根据C、D坐标,易得OC、CD的长,若(2)的直角三角形与△OCD相似,那么它们的直角边应该对应成比例,可先求出(2)中直角三角形的直角边长,然后再进行判断. 【解析】 (1)∵直线y=kx-1经过A(-3,2), ∴把点A(-3,2)代入y=kx-1得: 2=-3k-1,∴k=-1, 把A(-3,2)、B(0,-1)、C(-1,-2)代入y=ax2+bx+c 得, ∴, ∴抛物线的解析式为y=x2+2x-1. (2)由得D(-1,0),即点D在x轴上, 且|OD|=|OB|=1, ∴△BDO为等腰直角三角形, ∴∠BDO=45°, ①过点D作l1⊥AB,交y轴于E,交抛物线于P1、P2两点,连接P1A、P2A, 则△P1AD、△P2AD都是满足条件的直角三角形, ∵∠EDO=90°-∠BDO=45°, ∴|OE|=|OD|=1, ∴点E(0,1), ∴直线l1的解析式为y=x+1, 由 解得:或, ∴满足条件的点为P1(-2,-1)、P2(1,2); ②过点A作l2⊥AB,交抛物线于另一点P3,连接P3D,则△P3AD是满足条件的直角三角形, ∵l1∥l2且l2过点A(-3,2) ∴l2的解析式为y=x+5, 由 解得:或(舍去), ∴P3的坐标为(2,7), 综上所述,满足条件的点为P1(-2,-1)、P2(1,2)、P3(2,7). (3)∵P1(-2,-1),A(-3,2),D(-1,0), ∴P1D=,AD=2; 而OC=1,CD=2,即P1D:AD=OC:CD, 又∵∠OCD=∠P1AD=90°, ∴△P1AD∽△OCD, 同理可求得△P2AD与△OCD不相似,△P3AD与△OCD不相似; 故判断结果如下: △P1AD∽△OCD, △P2AD与△OCD不相似; △P3AD与△OCD不相似.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,抛物线的解析式是y=manfen5.com 满分网+1,点C的坐标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.
(1)写出点M的坐标;
(2)当四边形CMQP是以MQ,PC为腰的梯形时.
①求t关于x的函数解析式和自变量x的取值范围;
②当梯形CMQP的两底的长度之比为1:2时,求t的值.

manfen5.com 满分网 查看答案
如图所示,在直角梯形OABC,CB,OA,∠OAB=90°,点O为坐标原点,点A在x半轴上,对角线OB,AC相交于点M,OA=AB=4,OA=2CB.
(1)线段OB的长为______

manfen5.com 满分网 查看答案
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

manfen5.com 满分网 查看答案
如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的manfen5.com 满分网?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).
(1)求出图象与x轴的交点A,B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=manfen5.com 满分网S△MAB?若存在,求出P点的坐标;若不存在,请说明理由;
(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.