如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线
过点O、A两点.
(1)求该抛物线的解析式;
(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;
(3)如图2,在(2)的条件下,⊙O
1是以BC为直径的圆.过原点O作O
1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O
1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图所示,平面直角坐标系中,抛物线y=ax
2+bx+c经过A(0,4)、B(-2,0)、C(6,0).过点A作AD∥x轴交抛物线于点D,过点D作DE⊥x轴,垂足为点E.点M是四边形OADE的对角线的交点,点F在y轴负半轴上,且F(0,-2).
(1)求抛物线的解析式,并直接写出四边形OADE的形状;
(2)当点P、Q从C、F两点同时出发,均以每秒1个长度单位的速度沿CB、FA方向运动,点P运动到O时P、Q两点同时停止运动.设运动的时间为t秒,在运动过程中,以P、Q、O、M四点为顶点的四边形的面积为S,求出S与t之间的函数关系式,并写出自变量的取值范围;
(3)在抛物线上是否存在点N,使以B、C、F、N为顶点的四边形是梯形?若存在,直接写出点N的坐标;不存在,说明理由.
查看答案
如图,直线y=-x-1与抛物线y=ax
2+bx-4都经过点A(-1,0)、C(3,-4).
(1)求抛物线的解析式;
(2)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;
(3)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使△PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在.请说明理由.
查看答案
如图所示,已知直线y=kx-1与抛物线y=ax
2+bx+c交于A(-3,2)、B(0,-1)两点,抛物线的顶点为C(-1,-2),对称轴交直线AB于点D,连接OC.
(1)求k的值及抛物线的解析式;
(2)若P为抛物线上的点,且以P、A、D三点构成的三角形是以线段AD为一条直角边的直角三角形,请求出满足条件的点P的坐标;
(3)在(2)的条件下所得的三角形是否与△OCD相似?请直接写出判断结果,不必写出证明过程.
查看答案
在平面直角坐标系xOy中,抛物线的解析式是y=
+1,点C的坐标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.
(1)写出点M的坐标;
(2)当四边形CMQP是以MQ,PC为腰的梯形时.
①求t关于x的函数解析式和自变量x的取值范围;
②当梯形CMQP的两底的长度之比为1:2时,求t的值.
查看答案
如图所示,在直角梯形OABC,CB,OA,∠OAB=90°,点O为坐标原点,点A在x半轴上,对角线OB,AC相交于点M,OA=AB=4,OA=2CB.
(1)线段OB的长为______
查看答案