满分5 > 初中数学试题 >

如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过...

如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.
(1)求点A的坐标;
(2)当b=0时(如图(2)),△ABE与△ACE的面积大小关系如何?当b>-4时,上述关系还成立吗,为什么?
(3)是否存在这样的b,使得△BOC是以BC为斜边的直角三角形?若存在,求出b;若不存在,说明理由.
manfen5.com 满分网
(1)知道抛物线的解析式,要求与y轴的交点,令x=0就能求得. (2)当b=0时,直线为y=x,联立两方程式解得交点坐标,由三角形面积公式分别求出两三角形的面积.当b>-4时,仍然联立方程解坐标,作BF⊥y轴,CG⊥y轴,垂足分别为F、G,解得BF和CG的值,再由面积公式求面积值. (3)由BF=CG,∠BEF=∠CEG,∠BFE=∠CGE=90°,可证△BEF≌△CEG,可知BE=CE,即E为BC的中点,当OE=CE时,△OBC为直角三角形,解三角形得到答案. 【解析】 (1)将x=0,代入抛物线解析式,得点A的坐标为(0,-4), (2)当b=0时,直线为y=x,由, 解得,. ∴B、C的坐标分别为(-2,-2),(2,2),, ∴S△ABE=S△ACE. 当b>-4时,仍有S△ABE=S△ACE成立.理由如下 由, 解得,. 故B、C的坐标分别为(-,-+b),(,+b), 作BF⊥y轴,CG⊥y轴,垂足分别为F、G,则, 而△ABE和△ACE是同底的两个三角形, ∴S△ABE=S△ACE. (3)存在这样的b, ∵BF=CG,∠BEF=∠CEG,∠BFE=∠CGE=90°, ∴△BEF≌△CEG, ∴BE=CE, 即E为BC的中点, ∴当OE=CE时,OE=BC,此时△OBC为直角三角形. ∵, ∴,而OE=|b|, ∴, 解得b1=4,b2=-2, ∴当b=4或-2时,△OBC为直角三角形.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.
(1)求直线AC及抛物线的函数表达式;
(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;
(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c的顶点为A(3,-3),与x轴的一个交点为B(1,0).
(1)求抛物线的解析式.
(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P的坐标.
(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P、B、C为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).
(1)求抛物线的函数关系式;
(2)若点D(manfen5.com 满分网,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD的面积.

manfen5.com 满分网 查看答案
如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
如图,抛物线F:y=ax2+bx+c(a>0)与y轴相交于点C,直线L1经过点C且平行于x轴,将L1向上平移t个单位得到直线L2,设L1与抛物线F的交点为C、D,L2与抛物线F的交点为A、B,连接AC、BC.
(1)当manfen5.com 满分网manfen5.com 满分网,c=1,t=2时,探究△ABC的形状,并说明理由;
(2)若△ABC为直角三角形,求t的值(用含a的式子表示);
(3)在(2)的条件下,若点A关于y轴的对称点A’恰好在抛物线F的对称轴上,连接A’C,BD,求四边形A’CDB的面积(用含a的式子表示)
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.