满分5 > 初中数学试题 >

已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数图象经过原点和...

已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中a>b>0且a、b为实数.
(1)求一次函数的表达式(用含b的式子表示);
(2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.
(1)一次函数经过原点,说明这个一次函数是正比例函数,将点(1,-b)的坐标代入,即可求得这个一次函数的表达式. (2)将点(1,0)代入抛物线的解析式中,可得到a、b的关系式,用b替换掉a后联立一次函数的解析式,可得到一个关于x的一元二次方程,判断方程的根的判别式是否大于0即可. (3)由题意知:x1、x2是(2)题所得一元二次方程的两个实数根,根据韦达定理即可求得|x1-x2|的表达式,然后根据a、b的符号以及(2)题所得a、b的关系式即可得到|x1-x2|的取值范围. 【解析】 (1)∵一次函数过原点, ∴设一次函数的解析式为y=kx; ∵一次函数过(1,-b), ∴y=-bx.(3分) (2)∵y=ax2+bx-2过(1,0),即a+b=2,(4分) ∴b=2-a. 由,得:(5分) ax2+bx-2=-bx, ∴ax2+(2-a)x-2=-(2-a)x, ∴ax2+2(2-a)x-2=0①; ∵△=4(2-a)2+8a=16-16a+4a2+8a=4(a2-2a+1)+12=4(a-1)2+12>0, ∴方程①有两个不相等的实数根, ∴方程组有两组不同的解, ∴两函数图象有两个不同的交点.(6分) (3)∵两交点的横坐标x1、x2分别是方程①的解, ∴x1+x2=-,∴x1+x2=-,; ∴=; (或由求根公式得出)(8分) ∵a>b>0,a+b=2, ∴2>a>1; 令函数, ∵在1<a<2时,y随a增大而减小. ∴;(9分) ∴, ∴.(10分)
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=manfen5.com 满分网cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒manfen5.com 满分网cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.
(1)用t的式子表示△OPQ的面积S;
(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
(3)当△OPQ与△PAB和△QPB相似时,抛物线y=manfen5.com 满分网x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.

manfen5.com 满分网 查看答案
如图,已知抛物线y=manfen5.com 满分网x2+bx+c与x轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

manfen5.com 满分网 查看答案
如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.
(1)求点A的坐标;
(2)当b=0时(如图(2)),△ABE与△ACE的面积大小关系如何?当b>-4时,上述关系还成立吗,为什么?
(3)是否存在这样的b,使得△BOC是以BC为斜边的直角三角形?若存在,求出b;若不存在,说明理由.
manfen5.com 满分网
查看答案
在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.
(1)求直线AC及抛物线的函数表达式;
(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;
(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切.

manfen5.com 满分网 查看答案
已知抛物线y=ax2+bx+c的顶点为A(3,-3),与x轴的一个交点为B(1,0).
(1)求抛物线的解析式.
(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P的坐标.
(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P、B、C为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.