满分5 > 初中数学试题 >

如图1,已知:抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过...

如图1,已知:抛物线y=manfen5.com 满分网x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=manfen5.com 满分网x-2,连接AC.
(1)B、C两点坐标分别为B(____________)、C(____________),抛物线的函数关系式为______
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
manfen5.com 满分网
(1)令x=0以及y=0代入y=x-2得出B,C的坐标.把相关坐标代入抛物线可得函数关系式. (2)已知AB,AC,BC的值,根据反勾股定理可证明△ABC是直角三角形. (3)证明△CGF∽△CAB,利用线段比求出有关线段的值.求出S矩形DEFG的最大值.再根据△ADG∽△AOC的线段比求解. 【解析】 (1)令x=0,y=-2, 当y=0代入y=x-2得出:x=4, 故B,C的坐标分别为: B(4,0),C(0,-2).(2分) y=x2-x-2.(4分) (2)△ABC是直角三角形.(5分) 证明:令y=0,则x2-x-2=0. ∴x1=-1,x2=4. ∴A(-1,0).(6分) 解法一:∵AB=5,AC=,BC=2.(7分) ∴AC2+BC2=5+20=25=AB2. ∴△ABC是直角三角形.(8分) 解法二:∵AO=1,CO=2,BO=4, ∴ ∵∠AOC=∠COB=90°, ∴△AOC∽△COB.(7分) ∴∠ACO=∠CBO. ∵∠CBO+∠BCO=90°, ∴∠ACO+∠BCO=90度. 即∠ACB=90度. ∴△ABC是直角三角形.(8分) (3)能.①当矩形两个顶点在AB上时,如图1,CO交GF于H. ∵GF∥AB, ∴△CGF∽△CAB. ∴.(9分) 解法一:设GF=x,则DE=x, CH=x,DG=OH=OC-CH=2-x. ∴S矩形DEFG=x•(2-x)=-x2+2x=-(x-)2+.(10分) 当x=时,S最大. ∴DE=,DG=1. ∵△ADG∽△AOC, ∴, ∴AD=, ∴OD=,OE=2. ∴D(-,0),E(2,0).(11分) 解法二:设DG=x,则DE=GF=. ∴S矩形DEFG=x•=-x2+5x=-(x-1)2+.(10分) ∴当x=1时,S最大. ∴DG=1,DE=. ∵△ADG∽△AOC, ∴, ∴AD=, ∴OD=,OE=2. ∴D(-,0),E(2,0).(11分) ②当矩形一个顶点在AB上时,F与C重合,如图2, ∵DG∥BC, ∴△AGD∽△ACB. ∴. 解法一:设GD=x, ∴AC=,BC=2, ∴GF=AC-AG=-. ∴S矩形DEFG=x•(-)=-x2+x =-(x-)2+.(12分) 当x=时,S最大.∴GD=,AG=, ∴AD=. ∴OD=∴D(,0)(13分) 解法二:设DE=x, ∵AC=,BC=2, ∴GC=x,AG=-x. ∴GD=2-2x. ∴S矩形DEFG=x•(2-2x)=-2x2+2x=-2(x-)2+(12分) ∴当x=时,S最大, ∴GD=,AG=. ∴AD=. ∴OD= ∴D(,0)(13分) 综上所述:当矩形两个顶点在AB上时,坐标分别为(-,0),(2,0) 当矩形一个顶点在AB上时,坐标为(,0).(14分)
复制答案
考点分析:
相关试题推荐
已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数y=manfen5.com 满分网(k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标______,写出符合题意的其中一条抛物线解析式______,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数______
manfen5.com 满分网
查看答案
已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为manfen5.com 满分网,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图1,Rt△ABC中,∠A=90°,tanB=manfen5.com 满分网,点P在线段AB上运动,点Q、R分别在线段BC、AC上,且使得四边形APQR是矩形.设AP的长为x,矩形APQR的面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示).
manfen5.com 满分网
(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值.
为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论:
张明:图2中的抛物线过点(12,36)在图1中表示什么呢?
李明:因为抛物线上的点(x,y)是表示图1中AP的长与矩形APQR面积的对应关系,那么,(12,36)表示当AP=12时,AP的长与矩形APQR面积的对应关系.
赵明:对,我知道纵坐标36是什么意思了!
孔明:哦,这样就可以算出AB,这个问题就可以解决了.请根据上述对话,帮他们解答这个问题.
查看答案
如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.

manfen5.com 满分网 查看答案
如图,已知抛物线y=manfen5.com 满分网x2-2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连接O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.
(1)求直线l的函数解析式;
(2)求点D的坐标;
(3)抛物线上是否存在点Q,使得S△DQC=S△DPB?若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.