满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(...

如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立(请直接写出结论).

manfen5.com 满分网
(1)依题意联立方程组求出a,b的值后可求出函数表达式. (2)分别令x=0,y=0求出A、B、C三点的坐标,然后易求直线CM的解析式.证明四边形ANCP为平行四边形可求出点P的坐标. (3)求出直线y=-x+3与坐标轴的交点D,B的坐标.然后证明∠AFE=∠ABE=45°,AE=AF,可证得三角形AEF是等腰直角三角形. (4)根据(3)中所求,即可得出当E是直线y=-x+3上任意一点时,(3)中的结论仍成立. 【解析】 (1)根据题意,得, 解得, ∴抛物线对应的函数表达式为y=x2-2x-3; (2)存在.连接AP,CP, 如下图所示: 在y=x2-2x-3中,令x=0,得y=-3. 令y=0,得x2-2x-3=0, ∴x1=-1,x2=3. ∴A(-1,0),B(3,0),C(0,-3). 又y=(x-1)2-4, ∴顶点M(1,-4), 容易求得直线CM的表达式是y=-x-3. 在y=-x-3中,令y=0,得x=-3. ∴N(-3,0), ∴AN=2, 在y=x2-2x-3中,令y=-3,得x1=0,x2=2. ∴CP=2, ∴AN=CP. ∵AN∥CP, ∴四边形ANCP为平行四边形,此时P(2,-3); (3) △AEF是等腰直角三角形. 理由:在y=-x+3中,令x=0,得y=3,令y=0,得x=3. ∴直线y=-x+3与坐标轴的交点是D(0,3),B(3,0). ∴OD=OB, ∴∠OBD=45°, 又∵点C(0,-3), ∴OB=OC. ∴∠OBC=45度, 由图知∠AEF=∠ABF=45°,∠AFE=∠ABE=45°, ∴∠EAF=90°,且AE=AF. ∴△AEF是等腰直角三角形; (4)当点E是直线y=-x+3上任意一点时,(3)中的结论:△AEF是等腰直角三角形成立.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xoy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BC∥OA,OC=AB.tan∠BA0=manfen5.com 满分网,点B的坐标为(7,4).
(1)求点A、C的坐标;
(2)求经过点0、B、C的抛物线的解析式;
(3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:直角梯形OABC的四个顶点是O(0,0),A(manfen5.com 满分网,1),B(s,t),C(manfen5.com 满分网,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数.
(1)求s与t的值,并在直角坐标系中画出直角梯形OABC;
(2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围.

manfen5.com 满分网 查看答案
阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:
S△ABC=manfen5.com 满分网ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在一点P,使S△PAB=manfen5.com 满分网S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.

manfen5.com 满分网 manfen5.com 满分网 查看答案
如图,正方形ABCO的边长为manfen5.com 满分网,以O为原点建立平面直角坐标系,点A在x轴的负半轴上,点C在y轴的正半轴上,把正方形ABCO绕点O顺时针旋转α后得到正方形A1B1C1O(α<45°),B1C1交y轴于点D,且D为B1C1的中点,抛物线y=ax2+bx+c过点A1、B1、C1
(1)求tanα的值;
(2)求点A1的坐标,并直接写出点B1、点C1的坐标;
(3)求抛物线的函数表达式及其对称轴;
(4)在抛物线的对称轴上是否存在点P,使△PB1C1为直角三角形?若存在,直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-manfen5.com 满分网),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.
(1)求该二次函数的解析式;
(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;
(3)求△PBC面积的最大值,并求此时点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.