如图,在平面直角坐标系中,点A(
,0),B(3
,2),C(0,2).动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连接DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;
②若一抛物线y=-x
2+mx经过动点E,当S<2
时,求m的取值范围(写出答案即可).
考点分析:
相关试题推荐
如图,在矩形OABC中,已知A、C两点的坐标分别为A(4,0)、C(0,2),D为OA的中点.设点P是∠AOC平分线上的一个动点(不与点O重合).
(1)试证明:无论点P运动到何处,PC总与PD相等;
(2)当点P运动到与点B的距离最小时,试确定过O、P、D三点的抛物线的解析式;
(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,△PDE的周长最小?求出此时点P的坐标和△PDE的周长;
(4)设点N是矩形OABC的对称中心,是否存在点P,使∠CPN=90°?若存在,请直接写出点P的坐标.
查看答案
如图,在平面直角坐标系中放置一直角三角板,其顶点为A(-1,0),B(0,
),O(0,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O.
(1)如图,一抛物线经过点A,B,B′,求该抛物线解析式;
(2)设点P是在第一象限内抛物线上一动点,求使四边形PBAB′的面积达到最大时点P的坐标及面积的最大值.
查看答案
如图,抛物线y=ax
2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
查看答案
已知OABC是一张矩形纸片,AB=6.
(1)如图1,在AB上取一点M,使得△CBM与△CB′M关于CM所在直线对称,点B′恰好在边OA上,且△OB′C的面积为24cm
2,求BC的长;
(2)如图2.以O为原点,OA、OC所在直线分别为x轴、y轴建立平面直角坐标系.求对称轴CM所在直线的函数关系式;
(3)作B′G∥AB交CM于点G,若抛物线y=
x
2+m过点G,求这条抛物线所对应的函数关系式.
查看答案
已知二次函数y=x
2-x+c.
(1)若点A(-1,n)、B(2,2n-1)在二次函数y=x
2-x+c的图象上,求此二次函数的最小值;
(2)若点D(x
1,y
1)、E(x
2,y
2)、P(m,m)(m>0)在二次函数y=x
2-x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当2
≤OP≤2+
时,试判断直线DE与抛物线y=x
2-x+c+
的交点个数,并说明理由.
查看答案