满分5 > 初中数学试题 >

如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别...

如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.
(1)求抛物线的解析式;
(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;
(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.

manfen5.com 满分网
(1)根据图形,易得点A、B、C、D的坐标;进而可得抛物线上三点D、M、N的坐标,将其代入解析式,求可得解析式; (2)有(1)的解析式,可得顶点坐标,即OE、DE的长,易得△BFD∽△EOD,再由EF=FD-DE的关系代入数值可得答案;(3)首先根据CD的坐标求出CD的直线方程,在根据切线的性质,可求得P的坐标,进而可得P是否在抛物线上. 【解析】 (1)∵圆心O在坐标原点,圆O的半径为1 ∴点A、B、C、D的坐标分别为A(-1,0)、B(0,-1)、C(1,0)、D(0,1) ∵抛物线与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C ∴M(-1,-1)、N(1,1) ∵点D、M、N在抛物线上,将D(0,1)、M(-1,-1)、N(1,1)的坐标代入y=ax2+bx+c, 得: 解之,得: ∴抛物线的解析式为y=-x2+x+1. (2)∵y=-x2+x+1=-(x-)2+ ∴抛物线的对称轴为 ∴OE=,DE= 连接BF,则∠BFD=90° ∴△BFD∽△EOD ∴ 又DE=,OD=1,DB=2 ∴FD= ∴EF=FD-DE=. (3)点P在抛物线上. 设过D、C点的直线为y=kx+b 将点C(1,0)、D(0,1)的坐标代入y=kx+b,得 k=-1,b=1 ∴直线DC为y=-x+1 过点B作圆O的切线BP与x轴平行,P点的纵坐标为y=-1 将y=-1代入y=-x+1,得x=2 ∴P点的坐标为(2,-1) 当x=2时,y=-x2+x+1=-22+2+1=-1 所以,P点在抛物线y=-x2+x+1上.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,点A(manfen5.com 满分网,0),B(3manfen5.com 满分网,2),C(0,2).动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连接DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;
②若一抛物线y=-x2+mx经过动点E,当S<2manfen5.com 满分网时,求m的取值范围(写出答案即可).

manfen5.com 满分网 查看答案
如图,在矩形OABC中,已知A、C两点的坐标分别为A(4,0)、C(0,2),D为OA的中点.设点P是∠AOC平分线上的一个动点(不与点O重合).
(1)试证明:无论点P运动到何处,PC总与PD相等;
(2)当点P运动到与点B的距离最小时,试确定过O、P、D三点的抛物线的解析式;
(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,△PDE的周长最小?求出此时点P的坐标和△PDE的周长;
(4)设点N是矩形OABC的对称中心,是否存在点P,使∠CPN=90°?若存在,请直接写出点P的坐标.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中放置一直角三角板,其顶点为A(-1,0),B(0,manfen5.com 满分网),O(0,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O.
(1)如图,一抛物线经过点A,B,B′,求该抛物线解析式;
(2)设点P是在第一象限内抛物线上一动点,求使四边形PBAB′的面积达到最大时点P的坐标及面积的最大值.

manfen5.com 满分网 查看答案
如图,抛物线y=ax2+bx-4a经过A(-1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.

manfen5.com 满分网 查看答案
已知OABC是一张矩形纸片,AB=6.
(1)如图1,在AB上取一点M,使得△CBM与△CB′M关于CM所在直线对称,点B′恰好在边OA上,且△OB′C的面积为24cm2,求BC的长;
(2)如图2.以O为原点,OA、OC所在直线分别为x轴、y轴建立平面直角坐标系.求对称轴CM所在直线的函数关系式;
(3)作B′G∥AB交CM于点G,若抛物线y=manfen5.com 满分网x2+m过点G,求这条抛物线所对应的函数关系式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.