满分5 > 初中数学试题 >

定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称...

定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点.
manfen5.com 满分网
(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:
①b的值等于______
②四边形ABCD为( )
A、平行四边形;B、矩形;C、菱形;D、正方形.
(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c-1),求△ABD的面积;
(3)如图3,若F1:y=manfen5.com 满分网x2-manfen5.com 满分网x+manfen5.com 满分网,经过变换后,AC=2manfen5.com 满分网,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值.
(1)已知F2的解析式,把已知坐标代入即可得出b的值; (2)在(1)的基础上求出S△ABD; (3)要分情况讨论点C在点A的左边还是右边,作PH⊥AD交AD于点H,则PD+PH=PB+PH,是PB+PH值最小可求出h的最小值. 【解析】 (1)-2;D; (2)∵F2:y=a(x-2)2+c-1, 而A(0,c)在F2上,可得a=. ∴DB=(4a+c)-(c-1)=2, ∴S△ABD=2; (3)当点C在点A的右侧时(如图1), 设AC与BD交于点N, 抛物线y=x2-x+,配方得y=(x-1)2+2, 其顶点坐标是A(1,2), ∵AC=2, ∴点C的坐标为(1+2,2). ∵F2过点A, ∴F2解析式为y=(x-1-)2+1, ∴B(1+,1), ∴D(1+,3) ∴NB=ND=1, ∵点A与点C关于直线BD对称, ∴AC⊥DB,且AN=NC ∴四边形ABCD是菱形. ∴PD=PB. 作PH⊥AD交AD于点H,则PD+PH=PB+PH. 要使PD+PH最小,即要使PB+PH最小, 此最小值是点B到AD的距离,即△ABD边AD上的高h. ∵DN=1,AN=,DB⊥AC, ∴∠DAN=30°, 故△ABD是等边三角形. ∴h=AD= ∴最小值为. 当点C在点A的左侧时(如图2),同理,最小值为. 综上,点P到点D的距离和到直线AD的距离之和的最小值为.
复制答案
考点分析:
相关试题推荐
如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号).

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点O为坐标原点.Rt△OAB的斜边OA在x轴的正半轴上,点A的坐标为(2,0),点B在第一象限内,且OB=manfen5.com 满分网,∠OBA=90°.以边OB所在直线折叠Rt△OAB,使点A落在点C处.
(1)求证:△OAC为等边三角形;
(2)点D在x轴的正半轴上,且点D的坐标为(4,0).点P为线段OC上一动点(点P不与点O重合),连接PA、PD.设PC=x,△PAD的面积为y,求y与x之间的函数关系式;
(3)在(2)的条件下,当x=manfen5.com 满分网时,过点A作AM⊥PD于点M,若k=manfen5.com 满分网,求证:二次函数y=-2x2-(7k-3manfen5.com 满分网)x+manfen5.com 满分网k的图象关于y轴对称.

manfen5.com 满分网 查看答案
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
manfen5.com 满分网
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
查看答案
如图,二次函数的图象经过点D(0,manfen5.com 满分网),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.
(1)求二次函数的解析式;
(2)在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;
(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知直线y=-manfen5.com 满分网x+1交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.
(1)请直接写出点C,D的坐标;
(2)求抛物线的解析式;
(3)若正方形以每秒manfen5.com 满分网个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(4)在(3)的条件下,抛物线与正方形一起平移,同时D停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.