满分5 > 初中数学试题 >

如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上. (1)求a的值...

如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2)平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.

manfen5.com 满分网
(1)把(-4,8)代入y=ax2可求得a的值,把x=2代入所求的抛物线解析式,可得n的值,那么P的坐标为2,纵坐标为-n,求得AP与x轴的交点即为Q的坐标; (2)A′C+CB′最短,说明抛物线向左平移了线段CQ的距离,用顶点式设出相应的函数解析式,把新顶点坐标代入即可; (3)左右平移时,使A′D+DB′′最短即可,那么作出点A′关于x轴对称点的坐标为A′′,得到直线A′′B′′的解析式,让y=0,求得相应的点的坐标;进而得到抛物线顶点平移的规律,用顶点式设出相应的函数解析式,把新顶点坐标代入即可. 【解析】 (1)将点A(-4,8)的坐标代入y=ax2, 解得a=; 将点B(2,n)的坐标代入y=x2, 求得点B的坐标为(2,2), 则点B关于x轴对称点P的坐标为(2,-2), 设直线AP的解析式为y=kx+b, , 解得:, ∴直线AP的解析式是y=-x+, 令y=0,得x=. 即所求点Q的坐标是(,0); (2)①CQ=|-2-|=,(1分) 故将抛物线y=x2向左平移个单位时,A′C+CB′最短, 此时抛物线的函数解析式为y=(x+)2; ②左右平移抛物线y=x2,因为线段A′B′和CD的长是定值, 所以要使四边形A′B′CD的周长最短,只要使A′D+CB′最短;(1分) 第一种情况:如果将抛物线向右平移,显然有A′D+CB′>AD+CB, 因此不存在某个位置,使四边形A′B′CD的周长最短; 第二种情况:设抛物线向左平移了b个单位, 则点A′和点B′的坐标分别为A′(-4-b,8)和B′(2-b,2). 因为CD=2,因此将点B′向左平移2个单位得B′′(-b,2), 要使A′D+CB′最短,只要使A′D+DB′′最短, 点A′关于x轴对称点的坐标为A′′(-4-b,-8), 直线A′′B′′的解析式为y=x+b+2. 要使A′D+DB′′最短,点D应在直线A′′B′′上, 将点D(-4,0)代入直线A′′B′′的解析式,解得b=. 故将抛物线向左平移时,存在某个位置,使四边形A′B′CD的周长最短, 此时抛物线的函数解析式为y=(x+)2.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xOy中,抛物线y=-manfen5.com 满分网x2+bx+c与x轴交于A(1,0)、B(5,0)两点.
(1)求抛物线的解析式和顶点C的坐标;
(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°).
①当α等于多少度时,△CPQ是等腰三角形?
②设BP=t,AQ=s,求s与t之间的函数关系式.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(-1,2)
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的表达式;
(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO

manfen5.com 满分网 查看答案
正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:Rt△ABM∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.

manfen5.com 满分网 查看答案
定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点.
manfen5.com 满分网
(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:
①b的值等于______
②四边形ABCD为( )
A、平行四边形;B、矩形;C、菱形;D、正方形.
(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c-1),求△ABD的面积;
(3)如图3,若F1:y=manfen5.com 满分网x2-manfen5.com 满分网x+manfen5.com 满分网,经过变换后,AC=2manfen5.com 满分网,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值.
查看答案
如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.