满分5 > 初中数学试题 >

矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),...

矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-manfen5.com 满分网x与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线y=ax2-manfen5.com 满分网x经过点A,试确定此抛物线的表达式;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.

manfen5.com 满分网
前两问由抛物线性质,用待定系数求出点D的坐标和抛物线的表达式;最后一问找三角形相似,作辅助线过点O作OD的垂线交抛物线的对称轴于点P2,再根据相似三角形比例关系求出P点坐标. 【解析】 (1)∵直线y=-x与BC边相交于D点,知D点纵坐标为-3, ∴代入直线得点D的坐标为(4,-3).(2分) (2)∵A(6,0)在抛物线上,代入抛物线的表达式得a=, ∴y=x2-x.(4分) (3)抛物线的对称轴与x轴的交点P1符合条件. ∵OA∥CB, ∴∠P1OM=∠CDO. ∵∠OP1M=∠DCO=90°, ∴Rt△P1OM∽Rt△CDO.(6分) ∵抛物线的对称轴x=3, ∴点P1的坐标为P1(3,0).(7分) 过点O作OD的垂线交抛物线的对称轴于点P2. ∵对称轴平行于y轴, ∴∠P2MO=∠DOC. ∵∠P2OM=∠DCO=90°, ∴Rt△P2MO∽Rt△DOC.(8分) ∴点P2也符合条件,∠OP2M=∠ODC. ∴P1O=CO=3,∠P2P1O=∠DCO=90°, ∴Rt△P2P1O≌Rt△DCO.(9分) ∴P1P2=CD=4. ∵点P2在第一象限, ∴点P2的坐标为P2(3,4), ∴符合条件的点P有两个,分别是P1(3,0),P2(3,4).(11分)
复制答案
考点分析:
相关试题推荐
如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,∠B和∠C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h.
(1)请你用含x的代数式表示h;
(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少.

manfen5.com 满分网 查看答案
(附加题:如果你的全卷得分不足150分,则本题的得分记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.)
如图是二次函数y=-manfen5.com 满分网x2+2的图象在x轴上方的一部分,若这段图象与x轴所围成的阴影部分面积为S,试求出S取值的一个范围.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,将一块腰长为manfen5.com 满分网的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上
(1)点A的坐标为______,点B的坐标为______
(2)抛物线的关系式为______
(3)设(2)中抛物线的顶点为D,求△DBC的面积;
(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C″的位置.请判断点B′、C″是否在(2)中的抛物线上,并说明理由.

manfen5.com 满分网 查看答案
如图,已知点A(-4,8)和点B(2,n)在抛物线y=ax2上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
(2)平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,抛物线y=-manfen5.com 满分网x2+bx+c与x轴交于A(1,0)、B(5,0)两点.
(1)求抛物线的解析式和顶点C的坐标;
(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°).
①当α等于多少度时,△CPQ是等腰三角形?
②设BP=t,AQ=s,求s与t之间的函数关系式.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.