满分5 > 初中数学试题 >

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(...

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
manfen5.com 满分网
(1)由抛物线C1:y=a(x+2)2-5得顶点P的为(-2,-5),把点B(1,0)代入抛物线解析式,解得,a=; (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,根据点P、M关于点B成中心对称,证明△PBH≌△MBG,所以MG=PH=5,BG=BH=3,即顶点M的坐标为(4,5),根据抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到,所以抛物线C3的表达式为y=(x-4)2+5; (3)根据抛物线C4由C1绕点x轴上的点Q旋转180°得点N的纵坐标为5,设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PK⊥NG于K,可求得EF=AB=2BH=6,FG=3,点F坐标为(m+3,0),H坐标为(2,0),K坐标为(m,-5), 根据勾股定理得:PN2=NK2+PK2=m2+4m+104,PF2=PH2+HF2=m2+10m+50,NF2=52+32=34. 分三种情况讨论,利用勾股定理列方程求解即可.①当2∠PNF=90°时,PN2+NF2=PF2,解得m=,即Q点坐标为(,0); ②当∠PFN=90°时,PF2+NF2=PN2,解得m=, ∴Q点坐标为(,0), ③PN>NK=10>NF,所以∠NPF≠90° 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形. 【解析】 (1)由抛物线C1:y=a(x+2)2-5得, 顶点P的坐标为(-2,-5),(2分) ∵点B(1,0)在抛物线C1上, ∴0=a(1+2)2-5, 解得,a=;(4分) (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G, ∵点P、M关于点B成中心对称, ∴PM过点B,且PB=MB, ∴△PBH≌△MBG, ∴MG=PH=5,BG=BH=3, ∴顶点M的坐标为(4,5),(6分) 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到, ∴抛物线C3的表达式为y=(x-4)2+5;(8分) (3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到, ∴顶点N、P关于点Q成中心对称, 由(2)得点N的纵坐标为5, 设点N坐标为(m,5),(9分) 作PH⊥x轴于H,作NG⊥x轴于G, 作PK⊥NG于K, ∵旋转中心Q在x轴上, ∴EF=AB=2BH=6, ∴FG=3,点F坐标为(m+3,0). H坐标为(-2,0),K坐标为(m,-5), ∵顶点P的坐标为(-2,-5), 根据勾股定理得: PN2=NK2+PK2=m2+4m+104, PF2=PH2+HF2=m2+10m+50, NF2=52+32=34,(10分) ①当∠PNF=90°时,PN2+NF2=PF2,解得m=, ∴Q点坐标为(,0). ②当∠PFN=90°时,PF2+NF2=PN2,解得m=, ∴Q点坐标为(,0). ③∵PN>NK=10>NF, ∴∠NPF≠90° 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形.(13分)
复制答案
考点分析:
相关试题推荐
如图所示,已知实数m是方程x2-8x+16=0的一个实数根,抛物线y=manfen5.com 满分网x2+bx+c交x轴于点A(m,0)和点B,交y轴于点C(0,m).
(1)求这个抛物线的解析式;
(2)设点D为线段AB上的一个动点,过D作DE∥BC交AC于点E,又过D作DF∥AC交BC于点F,当四边形DECF的面积最大时,求点D的坐标;
(3)设△AOC的外接圆为⊙G,若M是⊙G的优弧ACO上的一个动点,连接AM、OM,问在这个抛物线位于y轴左侧的图象上是否存在点N,使得∠NOB=∠AMO?若存在,试求出点N的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知,如图1,过点E(0,-1)作平行于x轴的直线l,抛物线y=manfen5.com 满分网x2上的两点A、B的横坐标分别为-1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF.
(1)求点A、B、F的坐标;
(2)求证:CF⊥DF;
(3)点P是抛物线y=manfen5.com 满分网x2对称轴右侧图象上的一动点,过点P作PQ⊥PO交x轴于点Q,是否存在点P使得△OPQ与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,已知抛物线y=a(x-1)2+3manfen5.com 满分网(a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知抛物线y=manfen5.com 满分网x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=manfen5.com 满分网x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
查看答案
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-manfen5.com 满分网x与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线y=ax2-manfen5.com 满分网x经过点A,试确定此抛物线的表达式;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.