满分5 > 初中数学试题 >

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点. (1)求出抛物...

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

manfen5.com 满分网
(1)已知抛物线经过A(4,0),B(1,0),可设抛物线解析式的交点式,再把C(0,-2)代入即可; (2)∵△OAC是直角三角形,以A,P,M为顶点的三角形与其相似,由于点P可能在x轴的上方,或者下方,分三种情况,分别用相似比解答; (3)过D作y轴的平行线交AC于E,将△DCA分割成两个三角形△CDE,△ADE,它们的底相同,为DE,高的和为4,就可以表示它们的面积和,即△DCA的面积,运用代数式的变形求最大值. 【解析】 (1)∵该抛物线过点C(0,-2), 设该抛物线的解析式为y=ax2+bx-2. 将A(4,0),B(1,0)代入, 得, 解得, ∴此抛物线的解析式为y=-x2+x-2. (2)存在. 如图,设P点的横坐标为m, 则点P的纵坐标为, 当1<m<4时, AM=4-m,PM=, 又∵∠COA=∠PMA=90°, ∴①当==2时,△APM∽△ACO, ∴=2,即|4-m|=2(), ∴4-m=m2+5m-4, ∴m2-6m+8=0, ∴(m-2)(m-4)=0, 解得:m1=2,m2=4(舍去) ∴P(2,1) ②当,△APM∽△CAO, 那么有:2|4-m|=, ∴2(4-m)=-m2+m-2, ∴m2-9m+20=0, ∴(m-4)(m-5)=0, 解得:m1=4(舍去),m2=5(舍去), ∴当1<m<4时,P(2,1), 类似地可求出当m>4时,P(5,-2), 当m<1时,P(-3,-14), 当P,C重合时,△APM≌△ACO,P(0,-2). 综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14)或(0,-2); (3)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为-t2+t-2. 过D作y轴的平行线交AC于E. 由题意可求得直线AC的解析式为y=x-2. ∴E点的坐标为(t,t-2). ∴DE=-t2+t-2-(t-2)=-t2+2t. ∴S△DAC=×(-t2+2t)×4=-t2+4t=-(t-2)2+4. ∴当t=2时,△DAC面积最大. ∴D(2,1).
复制答案
考点分析:
相关试题推荐
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C.
①求抛物线的解析式;
②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.

manfen5.com 满分网 查看答案
如图,直线l与x轴、y轴分别交于点M(8,0),点N(0,6).点P从点N出发,以每秒1个单位长度的速度沿N⇒O方向运动,点Q从点O出发,以每秒2个单位长度的速度沿O→M的方向运动.已知点P、Q同时出发,当点Q达点M时,P、Q两manfen5.com 满分网点同时停止运动,设运动时间为t秒.
(1)设四边形MNPQ的面积为S,求S关于t的函数关系式,并写出t的取值范围.
(2)当t为何值时,PQ与l平行.
查看答案
如图,抛物线y=manfen5.com 满分网x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.manfen5.com 满分网
查看答案
如图,已知二次函数y=-manfen5.com 满分网x2+bx+c(c<0)的图象与x轴的正半轴相交于点A、B,与y轴相交于点C,且OC2=OA•OB.
(1)求c的值;
(2)若△ABC的面积为3,求该二次函数的解析式;
(3)设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P,使△PBD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.