如图,已知抛物线y=x
2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B
1,顶点为D
1,若点N在平移后的抛物线上,且满足△NBB
1的面积是△NDD
1面积的2倍,求点N的坐标.
考点分析:
相关试题推荐
已知:在平面直角坐标系中,抛物线y=ax
2-x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.
(1)求该抛物线的解析式及顶点D的坐标;
(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:
探究一:如图1,设△PAD的面积为S,令W=t•S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;
探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.(参考资料:抛物线y=ax
2+bx+c(a≠0)对称轴是直线x=
)
查看答案
如图,已知正方形ABCD的边长与Rt△PQR的直角边PQ的长均为4cm,QR=8cm,AB与QR在同一条直线l上.开始时点Q与点B重合,让△PQR以1cm/s速度在直线l上运动,直至点R与点A重合为止,ts时△PQR与正方形ABCD重叠部分的面积记为Scm
2.
(1)当t=3s时,求S的值;
(2)求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)写出t为何值时,重叠部分的面积S有最大值,最大值是多少?
查看答案
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.
查看答案
如图,已知抛物线y=ax
2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.
(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C.
①求抛物线的解析式;
②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.
查看答案
如图,直线l与x轴、y轴分别交于点M(8,0),点N(0,6).点P从点N出发,以每秒1个单位长度的速度沿N⇒O方向运动,点Q从点O出发,以每秒2个单位长度的速度沿O→M的方向运动.已知点P、Q同时出发,当点Q达点M时,P、Q两
点同时停止运动,设运动时间为t秒.
(1)设四边形MNPQ的面积为S,求S关于t的函数关系式,并写出t的取值范围.
(2)当t为何值时,PQ与l平行.
查看答案