满分5 > 初中数学试题 >

如图所示,菱形ABCD的边长为6厘米,∠B=60度.从初始时刻开始,点P、Q同时...

如图所示,菱形ABCD的边长为6厘米,∠B=60度.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为O的三角形),解答下列问题:
(1)点P、Q从出发到相遇所用时间是______秒;
(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是______秒;
(3)求y与x之间的函数关系式.

manfen5.com 满分网
(1)菱形ABCD的边长为6厘米,∠B=60°,则易证△ABC是等边三角形,边长是6厘米.点P、Q从出发到相遇,即两人所走的路程的和是18cm.设从出发到相遇所用的时间是x秒.列方程就可以求出时间. (2)当P在AC上,Q在AB上时,AP≠AQ,则一定不是等边三角形,当△APQ是等边三角形时,Q一定在边CD上,P一定在边CB上,若△APQ是等边三角形,则CP=DQ,根据这个相等关系,就可以得到一个关于x的方程,就可以得到x的值. (3)求y与x之间的函数关系式.应根据0≤x<3和3≤x<6以及6≤x≤9三种情况进行讨论.把x当作已知数值,就可以求出y.就可以得到函数的解析式. 【解析】 (1)∵四边形ABCD是菱形 ∴AB=BC 又∵∠B=60°, ∴△ABC是等边三角形, 因而边长是6.设点P,Q从出发到相遇所用的时间是x秒. 根据题意得到x+2x=18,解得x=6秒. (2)若△APQ是等边三角形, 此时点P在BC上,点Q在CD上,且△ADQ≌△ACP, 则CP=DQ,即x-6=18-2x,解得x=8; (3)①当0≤x<3时, y=S△AP1Q1==.(5分) ②当3≤x<6时, y=S△AP2Q2 = =sin60° = =-x(7分) ③当6≤x≤9时,设P3Q3与AC交于点O. (解法一) 过Q3作Q3E∥CB交AC于E,则△CQ3E为等边三角形. ∴Q3E=CE=CQ3=2x-12 ∵Q3E∥CB ∴△COP3∽△EOQ3 ∴ ∴OC=(2x-12) y=S△AOP3 =S△ACP3-S△COP3 =sin60° = =-; (解法二) 如图,过点O作OF⊥CP3于点F,OG⊥CQ3,于点G, 过点P3作P3H⊥DC交DC延长线于点H. ∵∠ACB=∠ACD ∴OF=OG 又CP3=x-6,CQ3=2x-12=2(x-6), ∴S△COP3= ∴ 又S△ACP3=×AC×sin60° = =(x-6) ∴ = = =-(10分)
复制答案
考点分析:
相关试题推荐
已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=manfen5.com 满分网x2+bx+c经过A(-manfen5.com 满分网,0)、B(0,-3)两点,此抛物线的对称轴为直线l,顶点为C,且l与直线AB交于点D.
(1)求此抛物线的解析式;
(2)直接写出此抛物线的对称轴和顶点坐标;
(3)连接BC,求证:BC=CD.

manfen5.com 满分网 查看答案
如图,点A、B的坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB重合部分的面积为S.
根据上述条件,回答下列问题:
(1)当矩形OEDC的顶点D在直线AB上时,求t的值;
(2)当t=4时,求S的值;
(3)直接写出S与t的函数关系式(不必写出解题过程);
(4)若S=12,则t=______

manfen5.com 满分网 查看答案
如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

manfen5.com 满分网 查看答案
如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=manfen5.com 满分网,求矩形ABCD的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.