满分5 > 初中数学试题 >

如图,已知二次函数y=(x+m)2+k-m2的图象与x轴相交于两个不同的点A(x...

如图,已知二次函数y=(x+m)2+k-m2的图象与x轴相交于两个不同的点A(x1,0)、B(x2,0),与y轴的交点为C.设△ABC的外接圆的圆心为点P.
(1)求⊙P与y轴的另一个交点D的坐标;
(2)如果AB恰好为⊙P的直径,且△ABC的面积等于manfen5.com 满分网,求m和k的值.

manfen5.com 满分网
(1)令x=0,代入抛物线解析式,即求得点C的坐标.由求根公式求得点A、B的横坐标,得到点A、B的横坐标的和与积,由相交弦定理求得OD的值,从而得到点D的坐标. (2)当AB又恰好为⊙P的直径,由垂径定理知,点C与点D关于x轴对称,故得到点C的坐标及k的值.根据一元二次方程的根与系数的关系式表示出AB线段的长,由三角形的面积公式表示出△ABC的面积,可求得m的值. 【解析】 (1)易求得点C的坐标为(0,k) 由题设可知x1,x2是方程(x+m)2+k-m2=0即x2+2mx+k=0的两根, 所以x1,2=, 所x1+x2=-2m,x1•x2=k(1分) 如图,∵⊙P与y轴的另一个交点为D,由于AB、CD是⊙P的两条相交弦,设它们的交点为点O,连接DB, ∴△AOC∽△DOB,则OD=(2分) 由题意知点C在y轴的负半轴上,从而点D在y轴的正半轴上, 所以点D的坐标为(0,1)(3分) (2)∵AB⊥CD,AB又恰好为⊙P的直径,则C、D关于点O对称, 所以点C的坐标为(0,-1), 即k=-1(4分) 又AB=|x2-x1|==, 所以S△ABC=AB×OC=×2×1=, 解得m=±2.(正值舍去)(6分) ∴k=-1,m=-2.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xOy中,抛物线y=manfen5.com 满分网x2-manfen5.com 满分网x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<manfen5.com 满分网时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

manfen5.com 满分网 查看答案
正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx-4过A、D、F三点.
(1)求抛物线的解析式;
(2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=manfen5.com 满分网S△FQN,则判断四边形AFQM的形状;
(3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图所示,菱形ABCD的边长为6厘米,∠B=60度.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为O的三角形),解答下列问题:
(1)点P、Q从出发到相遇所用时间是______秒;
(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是______秒;
(3)求y与x之间的函数关系式.

manfen5.com 满分网 查看答案
已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=manfen5.com 满分网x2+bx+c经过A(-manfen5.com 满分网,0)、B(0,-3)两点,此抛物线的对称轴为直线l,顶点为C,且l与直线AB交于点D.
(1)求此抛物线的解析式;
(2)直接写出此抛物线的对称轴和顶点坐标;
(3)连接BC,求证:BC=CD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.