满分5 > 初中数学试题 >

已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=x-a...

已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=manfen5.com 满分网x-a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.
(1)试用含a的代数式分别表示点M与N的坐标;
(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连接CD,求a的值和四边形ADCN的面积;
(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.
manfen5.com 满分网
(1)已知了抛物线的解析式,不难用公式法求出M的坐标为(1,a-1).由于抛物线过A点,因此A的坐标是(0,a).根据A,M的坐标,用待定系数法可得出直线AM的解析式为y=-x+a.直线AM和y=x-a联立方程组即可求出N的坐标为(a,-a). (2)根据折叠的性质不难得出N与N′正好关于y轴对称,因此N′的坐标为(-a,-a).由于N′在抛物线上,因此将N′的坐标代入抛物线的解析式中即可得出a的值.也就能确定N,C的坐标.求四边形ADCN的面积,可分成△ANC和△ADC两部分来求.已经求得了A,C,N的坐标,可求出AC的长以及N,D到y轴的距离.也就能求出△ANC和△ADC的面积,进而可求出四边形ADCN的面积. (3)本题可分两种情况进行讨论: ①当P在y轴左侧时,如果使以P,N,A,C为顶点的四边形为平行四边形,那么P需要满足的条件是PN平行且相等于AC,也就是说,如果N点向上平移AC个单位即-2a后得到的点就是P点.然后将此时P的坐标代入抛物线中,如果没有解说明不存在这样的点P,如果能求出a的值,那么即可求出此时P的坐标. ②当P在y轴右侧时,P需要满足的条件是PN与AC应互相平分(平行四边形的对角线互相平分),那么NP必过原点,且关于原点对称.那么可得出此时P的坐标,然后代入抛物线的解析式中按①的方法求解即可. 【解析】 (1)M(1,a-1),N(a,-a); (2)∵由题意得点N与点N′关于y轴对称, ∴N′(-a,-a). 将N′的坐标代入y=x2-2x+a得: -a=a2+a+a, ∴a1=0(不合题意,舍去),. ∴N(-3,), ∴点N到y轴的距离为3. ∵A(0,-),N'(3,), ∴直线AN'的解析式为,它与x轴的交点为D() ∴点D到y轴的距离为. ∴S四边形ADCN=S△ACN+S△ACD=××3+××=; (3)存在,理由如下: 当点P在y轴的左侧时,若ACPN是平行四边形,则PN平行且等于AC, 则把N向上平移-2a个单位得到P,坐标为(a,-a),代入抛物线的解析式, 得:-a=a2-a+a, 解得a1=0(不舍题意,舍去),a2=-, 则P(-,); 当点P在y轴的右侧时,若APCN是平行四边形,则AC与PN互相平分, 则OA=OC,OP=ON. 则P与N关于原点对称, 则P(-a,a); 将P点坐标代入抛物线解析式得:a=a2+a+a, 解得a1=0(不合题意,舍去),a2=-, 则P(,-). 故存在这样的点P1(-,)或P2(,-),能使得以P,A,C,N为顶点的四边形是平行四边形.
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=(x+m)2+k-m2的图象与x轴相交于两个不同的点A(x1,0)、B(x2,0),与y轴的交点为C.设△ABC的外接圆的圆心为点P.
(1)求⊙P与y轴的另一个交点D的坐标;
(2)如果AB恰好为⊙P的直径,且△ABC的面积等于manfen5.com 满分网,求m和k的值.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,抛物线y=manfen5.com 满分网x2-manfen5.com 满分网x-10与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连接AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒).
(1)求A,B,C三点的坐标和抛物线的顶点的坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<manfen5.com 满分网时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

manfen5.com 满分网 查看答案
正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx-4过A、D、F三点.
(1)求抛物线的解析式;
(2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=manfen5.com 满分网S△FQN,则判断四边形AFQM的形状;
(3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图所示,菱形ABCD的边长为6厘米,∠B=60度.从初始时刻开始,点P、Q同时从A点出发,点P以1厘米/秒的速度沿A→C→B的方向运动,点Q以2厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动,设P、Q运动的时间为x秒时,△APQ与△ABC重叠部分的面积为y平方厘米(这里规定:点和线段是面积为O的三角形),解答下列问题:
(1)点P、Q从出发到相遇所用时间是______秒;
(2)点P、Q从开始运动到停止的过程中,当△APQ是等边三角形时x的值是______秒;
(3)求y与x之间的函数关系式.

manfen5.com 满分网 查看答案
已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.